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2 NOTES BY OTIS CHODOSH AND CHRISTOS MANTOULIDIS

We would like to thank Richard Bamler for an excellent class. Please be aware that the notes are
a work in progress; it is likely that we have introduced numerous typos in our compilation process,
and would appreciate it if these are brought to our attention.

1. Introduction to Ricci flow

The history of Ricci flow can be divided into the ”pre-Perelman” and the ”post-Perelman”
eras. The pre-Perelman era starts with Hamilton who first wrote down the Ricci flow equation
[Ham82] and is characterized by the use of maximum principles, curvature pinching, and Harnack
estimates. These tools also led to the proof of the Differentiable Sphere Theorem by Brendle
and Schoen [BS09]. The post-Perelman era is characterized by the use of functionals (the W
and F functionals), L geometry, blow up analysis, singularity models, and comparison geometry.
Combined with Ricci flow with surgery, these tools helped complete the proof of the Poincaré
conjecture and the geometrization conjecture; [Per02], [Per03b], [Per03a].

A Ricci flow is a family pgtqtPI of Riemannian metrics on a smooth manifold, parametrized by a
time interval I Ă R and evolving1 by

Btgt “ ´2 Ricgt

Remark 1.1. In harmonic local coordinates around a point p, the Ricci tensor at p is

Ricijppq “ ´
1

2
∆pgijqppq

and so Ricci flow resembles a heat flow evolution.

Example 1.2. If pM, gq is Einstein, i.e. Ricg “ λg, then gt fi p1 ´ 2λtqg is a Ricci flow with
g0 “ g, because

Btgt “ ´2λg “ ´2 Ricg “ ´2 Ricgt
Note that in this example Rmgt “

1
1´2λt Rmg and Ricgt “ Ricg. When λ ą 0 Ricci flow can only

be defined up to time Tmax “
1

2λ , after which it becomes extinct.

Figure 1. Shrinking round sphere, S2.

If λ “ 0, Ricci flow is static and can be defined for all times.

Figure 2. Static flat torus, T2.

If λ ă 0, Ricci flow is expanding and can be defined for all positive times.

Example 1.3. If pg1
t q, pg

2
t q are Ricci flows on M1, M2 respectively, then g1

t ` g
2
t is a Ricci flow on

M1 ˆM2.

Remark 1.4 (Parabolic rescaling). If pgtq is a Ricci flow, then so are pλ´1gλtq and pgt`t0q.

1Our convention here is that Ricij “ gst Rmistj , and Rmijji is a sectional curvature.
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Figure 3. Expanding hyperbolic surface, T2#T2.

Figure 4. Evolving product manifold S2 ˆ R, gt “ p1´ 2tqgS2 ` gR.

Remark 1.5 (Invariance under diffeomorphisms). Note that the Ricci flow equation is invariant
under diffeomorphisms, i.e. if Φ : M Ñ M is a diffeomorphism and pgtq is a Ricci flow, then so is
pΦ˚gtq. That is,

BtΦ
˚gt “ ´2 RicrΦ˚gts.

The infinitesimal version of this, assuming Φ is generated by a vector field X, is

BtLXgt “ ´2pDRicgtqrLXgts.

From this equation we see that the Ricci flow cannot be strongly parabolic. Here is a heuristic
reason: Assume that pgtq is a smooth solution to Ricci flow and consider a vector field X which
is highly oscillating. Then LXgt is very likely also highly oscillating. But we expect parabolic
equations to have a smoothing effect, which is not the case here.

There is another heuristic reason to explain that Ricci flow is not strongly parabolic. If g were
a Ricci flat metric then there would be no evolution, and hence LXgt would be in the kernel of the
linearized Ricci operator so the kernel would be infinite dimensional. If the equation were strongly
parabolic, then the right hand side would be elliptic and should have a finite dimensional kernel.

In summary the diffeomorphism invariance of Ricci flow breaks strong parabolicity, so to prove
short time existence we had better couple our evolution equation with a separate evolving diffeo-
morphism.

2. Short time existence

If we write out the Ricci flow equation in local coordinates, we get

(2.1) Btgij “ 4ggij ` g
stB2

ijgst ´ g
stB2

sigtj ´ g
stB2

sjgti ` lower order terms

which is not strongly parabolic. This is related to the problem pointed out above: if pgtq is a
Ricci flow and g1t “ Φ˚gt where Φ is rough and close to the identity, then g1t will stay rough.

The idea is to show existence of a related flow rgt “ pΦtq
´1˚gt and then switch back to gt. The

following is known as de Turck’s trick, after [DeT83].
Fix an arbitrary background metric ḡ on M and consider diffeomorphisms Φt : M Ñ M and a

family of Riemannian metrics prgtqtPr0,τq that evolve according to system

(2.2)
BtΦt “ ∆Φ˚t rgt,ḡ

Φt

Btrgt “ ´2 Ric
rgt ´LpBtΦtq˝Φ´1

t
rgt
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Lemma 2.1. If we write gt “ Φ˚t rgt, then the system (2.2) is equivalent to

BtΦt “ ∆gt,ḡΦt

Btgt “ ´2 Ricgt

Proof. We just observe that:
Btgt “ BtpΦ

˚
t rgtq

“ Φ˚tLBtΦt˝Φ´1
t
rgt ` Φ˚t Btrgt

“ ´2Φ˚t Ric
rgt “ ´2 Ricgt .

�

So we have reduced the proof of short time existence for Ricci flow to proving short time existence
for another system. We analyze that system and show that the evolution is strongly parabolic.

Keep in mind that the setup is:

Φt : M ÝÝÑM

with the target manifold endowed with the metrics ḡ, rgt, and the domain endowed with the pullback
metrics Φ˚t rgt.

Let r∇, ∇ be the Levi Civita connections with respect to rgt, ḡ, and let p PM be some fixed point
at which we seek to compute the Laplacian

∆Φ˚t rgt,ḡ
Φtppq P TΦtppqM

Let peiq be an orthonormal frame at the point Φtppq with respect to rgt, with r∇eipΦtppqq “ 0.
Then

BtΦtppq “ ∆Φ˚t rgt,ḡ
Φtppq “

ÿ

i

∇eieipΦtppqq “
ÿ

i

´

∇eiei ´
r∇eiei

¯

pΦtppqq

The point is that the expression above is now tensorial, because ∇´ r∇ is a two tensor. We’ll use
the Koszul formula to rewrite this in terms of the tension field associated with the harmonic heat
flow. Suppose that X, Y , Z are arbitrary vector fields such that ∇X “ ∇Y “ ∇Z “ 0 at Φtppq.
Then:

2rgtp∇XY ´ r∇XY, Zq “ ´2rgtpr∇XY, Zq “ ´XrgtpY,Zq ´ Y rgtpX,Zq ` ZrgtpX,Y q

“ ´p∇XrgtqpY,Zq ´ p∇Y rgtqpX,Zq ` p∇ZrgtqpX,Y q

Plug in the ei for X, Y , Z (which is compatible with the assumption ∇X “ ∇Y “ ∇Z “ 0 due to
tensoriality) in the Koszul formula above:

BtΦtppq “ ∆Φ˚t rgt,ḡ
Φtppq

“
ÿ

s,t

rgstt

ˆ

´p∇esrgqpetq `
1

2
p∇rgqpes, etq

˙

fi ´Xḡprgtq

So from (2.2) we obtain the Ricci de Turck equation

Btrgt “ ´2 Ric
rgt `LXḡprgtqrgt

We can now use that

pLY rgtqpA,Bq “ Y rgtpA,Bq ´ rgtprY,As, Bq ´ rgtpA, rY,Bsq

“ p∇Y rgtqpA,Bq ` rgtp∇AY,Bq ` rgtpA,∇BY q

so in local coordinates LXḡprgtqrgt is

rgstt Bsirgtj ` rgstBsjrgti ´ B
2
ijrgij ` lower order terms
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By examining (2.1) we conclude that in local coordinates Ricci de Turck is

Btrgt “ ∆
rgtrgt ` lower order terms

and is indeed strongly parabolic.

Lemma 2.2 (Short time existence). Assume pM, gq is a closed Riemannian manifold. There is
τ ą 0 and a Ricci flow pgtqtPr0,τq such that g0 “ g. This flow is unique.

Proof. For existence, first solve the Ricci de Turck equation with initial data g0 to obtain rgt, then
integrate the evolution of Φt in (2.2) with initial data Φ0 ” id to obtain Φt. By the previous lemma,
gt “ Φ˚t rgt is a Ricci flow starting at g0.

For uniqueness, given gt solve the harmonic map heat flow

BtΦt “ ∆gt,ḡΦt

The Φt are diffeomorphisms for a short amount of time. Then rgt “ pΦ
´1
t q

˚gt solves (2.2), whose
solution is however unique by the parabolicity of Ricci de Turck. Throughout we can use ḡ “ g0

as the background metric. �

Remark 2.3. Several choices of a vector field X work, as long as the symbol at rg “ ḡ is the same.

Remark 2.4. The variation of the Ricci de Turck equation at rg “ ḡ is

Btht “ ∆Lht

where ∆L denotes the Lichnerowicz Laplacian:

p∆LhqpX,Y q “ p∆hqpX,Y q ´ hpX,RicpY qq ´ hpRicpXq, Y q ` 2xRpX, ¨, ¨, Y q, hy

3. Distance distorion estimates

Since the metric evolves by the Ricci tensor, having control over the latter is likely to control
the evolution of distances between pairs of points. The following theorem makes this statement
precise:

Theorem 3.1. Let pgtqtPrt1,t2s be a Ricci flow and assume that ρ1gt ď Rict ď ρ2gt on M ˆ rt1, t2s.
Then

´ρ2 disttpx, yq ď
d

dt
disttpx, yq ď ´ρ1 disttpx, yq

in the (backward and forward, respectively) barrier sense on pt1, t2q, and in the classical sense almost
everywhere. Furthermore

e´ρ2pt2´t1q ď
distt2px, yq

distt1px, yq
ď e´ρ1pt2´t1q

Proof. Fix two distinct points x, y PM , a time t0 P pt1, t2q, and a minimizing geodesic γ : r0, ds Ñ
M joining x to y parametrized by arc length at time t0, i.e. |γ1psq|t0 “ 1 for all s P r0, ds. Now we
vary the metric gt with respect to which we compute the length of γ, but we hold γ fixed. If we
write

`tpγq “

ż d

0
|γ1psq|t ds

for P rt1, t2s then

(3.1)
d

dt

”

`tpγq
ı

t“t0
“

1

2

ż d

0

d

dt

”

@

γ1psq, γ1psq
D

t

ı

t“t0
ds “ ´

ż d

0
Rict0pγ

1psq, γ1psqq ds

Now by estimating ρ1gt0 ď Rict0 ď ρ2gt0 we get

´ρ2 distt0px, yq ď
d

dt

”

`tpγq
ı

t“t0
ď ´ρ1 distt0px, yq
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The barrier inequality follows by noting that disttpx, yq ď `tpγq, and the a.e. classical inequality
follows by noting that t ÞÑ disttpx, yq is Lipschitz. To get the second inequality we simply integrate.

�

Remark 3.2. This theorem gives us control over distance distortion but it is somewhat crude.
In fact we can do significantly better on long geodesics. By borrowing intuition from the Bonnet-
Myers theorem in Riemannian geometry, we expect that the Ricci curvature integral in (3.1) cannot
possibly be too large on a minimizing geodesic.

Theorem 3.3. Let pgtqtPrt1,t2s be a Ricci flow and assume that Rict ď pn´ 1qKgt on Mnˆ rt1, t2s,
for K ą 0. Then

d

dt´
disttpx, yq ě ´CK

1{2

in the backward barrier sense on pt1, t2q, and in the classical sense almost everywhere. Furthermore

distt2px, yq ě distt1px, yq ´ CK
1{2pt2 ´ t1q

where C “ Cpnq.

Proof. It suffices to show the differential inequality. Once again pick distinct points x, y P M , a
time t P pt1, t2q, and a minimizing geodesic γ : r0, ds ÑM joining x to y parametrized by arc length
at time t. This theorem is only an improvement over the previous one for long geodesics, so when
d “ disttpx, yq ď 2K´1{2 we just note that

d

dt
disttpx, yq ě ´pn´ 1qKd “ ´2pn´ 1qK1{2

suffices for our purposes.
The interesting case is d ą 2K´1{2. Choose a parallel orthonormal frame E1 “ γ1psq, E2, . . . , En

on γ and let ϕ : r0, ds Ñ R be a smooth function such that

0 ď ϕ ď 1, ϕ ” 1 on rK´1{2, d´K1{2s, |ϕ1| ď 2K1{2

For i “ 2, . . . n we have by the second variation formula

0 ď IγpϕEi, ϕEiq “

ż d

0

”

|∇γ1pϕEiq|
2 ´ RmpϕEi, γ

1, γ1, ϕEiq
ı

ds

“

ż d

0

”

|ϕ1|2 ´ ϕ2 RmpEi, γ
1, γ1, Eiq

ı

ds

Summing:

0 ď

ż d

0

“

pn´ 1q|ϕ1|2 ´ ϕ2 Ricpγ1, γ1q
‰

ds

So we can estimate the Ricci integral in (3.1) by

ż d

0
Ricpγ1, γ1q ds “

ż d

0
ϕ2 Ricpγ1, γ1q ds`

ż d

0
p1´ ϕ2qRicpγ1, γ1q ds

ď

ż d

0
pn´ 1q|ϕ1|2 ds`

ż d

0
p1´ ϕ2qpn´ 1qK ds

ď 8pn´ 1qK1{2 ` 2pn´ 1qK1{2 “ 10pn´ 1qK1{2

The barrier inequality follows as before. �
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4. Uhlenbeck’s trick

Suppose we have a Ricci flow pgtqtPI on M ˆ I. If π : M ˆ I ÑM is the projection from space-
time to the manifold, then the bundle T spatpM ˆ Iq “ π˚TM Ă T pM ˆ Iq is called the spatial
tangent space. The vector field pointing forward in time is called T “ Bt. All vector fields below
are allowed to be time dependent, except for the stationary ones. We have the following diagram
of manifolds and bundles.

T pM ˆ Iq M ˆ IT spatpM ˆ Iq

TM M

π

The Ricci flow pgtqtPI can be seen as a metric in the spatial tangent space. In the Uhlenbeck

trick we introduce a special connection r∇ on the bundle T spatpM ˆ Iq2 We will see how this
connection will help us compute evolution equations in a more geometric fashion than by simply
doing computations in local coordinates.

Definition 4.1. For spatial vector fields X, Y (i.e. sections of T spatpM ˆ Iq) we simply (re-)define

r∇XYpp,tq fi ∇LC,t
X Yp

where ∇LC,t denotes the Levi-Civita connection of gt. We’re going to drop these superscripts going
forward. For a spatial vector field X we define

r∇TXpp,tq fi 9Xpp,tq ´ RicpXpp,tqq “ rT,Xspp,tq ´ RicpXpp,tqq

Remark 4.2. Even though the connection r∇ does not come from a metric tensor, we can think of
it as the Levi-Civita connection of g “ gt ` pR` ε

´1q dt2 as ε Ó 0.

We can extend the definition of the connection to other bundles (e.g. one forms, two tensors) by
the standard pairing method.

Example 4.3. Let α be a one form on the spatial tangent bundle, i.e. α P pT spatq˚pM ˆ Iq, and
let X be a stationary vector field. We have

pr∇TαqpXq “ BtpαpXqq ´ αpr∇TXq “ BtpαpXqq ` αpRicpXqq

or in other words r∇Tα “ 9α` α ˝ Ric.

Example 4.4. Let’s see how the metric tensors gt interact with r∇. For stationary vector fields X,
Y we have

pr∇T gtqpX,Y q “ BtpgtpX,Y qq ´ gtpr∇TX,Y q ´ gtpX, r∇TY q

“ ´2 RicpX,Y q ` RicpX,Y q ` RicpX,Y q “ 0

That is, the Ricci flow reads r∇T g “ 0. This can be viewed as a form of metric compatibility.

2That is, we introduce a connection r∇ with which we can differentiate spatial vector fields with respect to space-

time vector fields. In particular, expressions like r∇TT are meaningless.
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Example 4.5. The metric compatibility relation above means that musical operators also behave
well under the connection. If X is a time dependent spatial vector field, α “ X5, and Y is stationary
then

pr∇TαqpY q “ BtpαpY qq ´ αpr∇TY q “ 9αpY q ´ xX,RicpY qy “ x 9X,Y y ´ xRicpXq, Y y “ pr∇TXq
5

i.e. the musical operator 5 commutes with r∇. The same is true for 7.

Example 4.6. Assume u P C8pM ˆ Iq satisfies Btu “ ∆u, and X is stationary. Then

pr∇TduqpXq “ BtpdupXqq ` dupRicpXqq “ pd∆uqpXq ` dupRicpXqq “ p∆duqpXq

by a Bochner-type formula. That is
r∇T∇u “ ∆∇u

By the Bochner formula again,

r∇T |∇u|2 “ ∆|∇u|2 ´ 2|∇2u|2 ď ∆|∇u|2

and the Lipschitz constant of u improves with time.

Example 4.7. Given what we’ve done so far, we can compute the evolution of the volume form

dµt. Since r∇T gt “ 0 we also have r∇Tdµt “ 0. For stationary ei that form a positively oriented
orthonormal basis at time t we have

0 “ pr∇Tdµtqpe1, . . . , enq

“ Btpdµtpe1, . . . , enqq ´ dµtpr∇T e1, . . . , enq ´ . . .´ dµtpe1, . . . , r∇T enq

“ Btpdµtpe1, . . . , enqq `
n
ÿ

i“1

Ricpei, eiqdµtpe1, . . . , enq

and thus d 9µt “ ´Rdµt. For example, this implies that

Bt

ż

M
f dµt “ ´

ż

M
fR dµt

for all f P C8pMq.

We want to compute the Riemann curvature tensor rR associated with r∇; in particular rRpT,XqY
when X, Y are stationary and parallel at a point. At that same point:

(4.1) rRpT,XqY “ r∇T∇XY ´∇X
r∇TY ´ r∇rT,XsY “ r∇T∇XY ` p∇X RicqpY q

If Z is stationary and commutes with X, Y at the point, then by the Koszul formula (and after
commuting Bt with X, Y or Z)

2Btx∇XY,Zy “ Bt pXxY, Zy ` Y xX,Zy ´ ZxX,Y yq

“ ´2X pRicpY,Zqq ´ 2Y pRicpX,Zqq ` 2Z pRicpX,Y qq

“ ´2p∇X RicqpY, Zq ´ 2p∇Y RicqpX,Zq ` 2p∇Z RicqpX,Y q

which implies via r∇T gt “ 0 that

xr∇T∇XY, Zy “ r∇T x∇XY,Zy “ Btx∇XY,Zy

“ ´2p∇X RicqpY,Zq ´ 2p∇Y RicqpX,Zq ` 2p∇Z RicqpX,Y q

Plugging back into (4.1) we find

x rRpT,XqY, Zy “ p∇Z RicqpX,Y q ´ p∇Y RicqpX,Zq “
n
ÿ

i“1

p∇eiRqpei, X, Y, Zq
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where the last equality follows from the second Bianchi identity. That is,

rRpT,XqY “ tr12p∇¨Rqp¨, XqY ô rRpT,Xq “ tr12p∇¨Rqp¨, Xq

As usual rRpT,Xq denotes the Riemann endomorphism on T spatpM ˆ Iq. Next we wish to derive a

second Bianchi identity for rR.

Remark 4.8. We have to be careful here since the connection r∇ does not arise from a metric. In
general, if E is a vector bundle over a manifold M with a connection ∇ (but no metric), then we
have a curvature R which is a smooth section of Λ2T ˚M b EndpEq. If we have a parallel metric,
then R is a smooth section of Λ2T ˚M b Λ2E. We don’t expect to have a second Bianchi identity
in general, though.

Remark 4.9. Let us briefly recall how connections on vector bundles can be extended to bundles
formed by tensor product and taking the dual bundle. This will assist us in explaining the notation
used above. Suppose that E,F are vector bundles over M and they each have a connection (we
will abuse notation and call both connections ∇). Then E b F has a induced connection, defined
by requiring that it satisfy the product rule

∇Xpαb βq “ p∇Xαq b β ` αb p∇Xβq

for sections α P C8pM ;Eq, β P C8pM ;F q, and a vector field X P C8pM ;TMq. Hence, we can
define a curvature on E b F by (assume X,Y are commuting vector fields)

RpX,Y qpαb βq “ ∇X∇Y pαb βq ´∇Y∇Xpαb βq “ pRpX,Y qαq b β ` αb pRpX,Y qβq.

The important thing to note here is that the mixed terms cancel, so the curvature RpX,Y q also
obeys the product rule. Similarly, if E is a vector bundle over M and E˚ is the dual bundle, then
E˚ inherits a connection from E, defined by

p∇Xβqpαq “ Xpβpαqq ´ βp∇Xαq,

for α P C8pM ;Eq, β P C8pM ;E˚q and X a vector field. Thus, the same reasoning as above yields

pRpX,Y qβqpαq “ ´βpRpX,Y qαq.

Finally, let us discuss the endomorphism bundle EndpEq “ E b E˚. If f P C8pM ; EndpEqq, then
for α P C8pM ;Eq, we have that

p∇Xfqpαq “ ∇Xpfpαqq ´ fp∇Xαq.

For example, it is easy to see from this that f “ idE is parallel. It is not hard to check that the
curvature tensor on EndpEq satisfies

pRpX,Y qfqpαq “ RpX,Y qpfpαqq ´ fpRpX,Y qαq.

Now that we have explained connections and curvature tensors on general bundles, let’s return

to showing that the particular connection r∇ satisfies a second Bianchi identity. Let X, Y , Z be
stationary, commuting vector fields. Then

ÿ

T,X,Y
cyclic

pr∇T p rRpX,Y qqqZ “
ÿ

T,X,Y
cyclic

r∇T∇X∇Y Z ´ r∇T∇Y∇XZ ´RpX,Y qr∇TZ

“
ÿ

T,X,Y
cyclic

r∇T∇X∇Y Z ´ r∇T∇Y∇XZ ´∇X∇Y
r∇TZ `∇Y∇X

r∇TZ

“ 0

i.e. we have a second Bianchi identity r∇T pRpX,Y qq`∇Xp rRpY, T qq`∇Y p rRpT,Xqq “ 0 as claimed.
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5. Evolution of curvatures through Uhlenbeck’s trick

The goal is to compute the classical curvature evolution equations without having to resort to

local coordinates in the usual way. In what follows we view the various RpX,Y q, pr∇TRqpX,Y q,
etc. as endomorphisms of vector fields. We have:

pr∇TRqpX,Y q “ ´Rpr∇TX,Y q ´RpX, r∇TY q ` r∇T pRpX,Y qq

“ RpRicpXq, Y q `RpX,RicpY qq ´∇Xp rRpY, T qq ´∇Y p rRpT,Xqq

“ RpRicpXq, Y q `RpX,RicpY qq ´
n
ÿ

i“1

p∇2
X,eiRqpY, eiq ` p∇

2
Y,eiRqpei, Xq

“ RpRicpXq, Y q `RpX,RicpY qq ´
n
ÿ

i“1

p∇2
ei,XRqpY, eiq ` p∇

2
ei,YRqpei, Xq

´

n
ÿ

i“1

pRpX, eiqRqpY, eiq ` pRpY, eiqRqpei, Xq

“ RpRicpXq, Y q `RpX,RicpY qq `
n
ÿ

i“1

p∇2
ei,eiRqpX,Y q

´

n
ÿ

i“1

pRpX, eiqRqpY, eiq ` pRpY, eiqRqpei, Xq

“ p∆RqpX,Y q `RpRicpXq, Y q `RpX,RicpY qq

´

n
ÿ

i“1

pRpX, eiqRqpY, eiq ` pRpY, eiqRqpei, Xq

We compute, while simultaneously writing out the action on an implied vector field Z:
n
ÿ

i“1

pRpX, eiqRqpY, eiqZ “
n
ÿ

i“1

RpX, eiqpRpY, eiqZq ´RpRpX, eiqY, eiqZ

´RpY,RpX, eiqei
loooomoooon

Ric term

qZ ´RpY, eiqpRpX, eiqZq

“

n
ÿ

i“1

´

rRpX, eiq, RpY, eiqsZ ´RpRpX, eiqY, eiqZ
¯

´RpY,RicpXqqZ

From this, we may simplify our previous expression for r∇TR to

pr∇TRqpX,Y q “ p∆RqpX,Y q ´ 2
n
ÿ

i“1

rRpX, eiq, RpY, eiqs

`

n
ÿ

i“1

RpRpX, eiqY, eiq ´RpRpY, eiqX, eiq.

By the first Bianchi identity applied to the inner-most curvature tensor, we see that

RpRpX, eiqY, eiq ´RpRpY, eiqX, eiq “ RpRpX,Y qei, eiq,

so we thus obtain the evolution equation for the curvature tensor under Ricci flow

(5.1) pr∇TRqpX,Y q “ p∆RqpX,Y q´2
n
ÿ

i“1

rRpX, eiq, RpY, eiqs `
n
ÿ

i“1

RpRpX,Y qei, eiq

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

:“QpRqpX,Y q

.
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We remark that this is often written in terms of the curvature operator, i.e., if we regard Rm P

C8pM ; Endp
Ź2 T ˚Mqq, then this can be written succinctly as

r∇T Rm “ ∆ Rm`2 Rm#`2 Rm2 .

Here the Rm2 is just the square of Rm as an endomorphism. The other term also has a similar
interpretation.

To obtain evolution equations for the Ricci curvature, we may trace (5.1). Hence,

pr∇T RicqpX,Y q “
n
ÿ

i“1

A

pr∇TRqpX, eiqei, Y
E

“ p∆ RicqpX,Y q `
n
ÿ

i,j“1

p´2 xrRpX, ejq, Rpei, ejqsei, Y y ` xRpRpX, eiqej , ejqei, Y yq .

Note that
n
ÿ

i,j“1

xRpX, ejqRpei, ejqei, Y y “ ´
n
ÿ

j“1

xRpX, ejqRicpejq, Y y ,

and
n
ÿ

i,j“1

p2 xRpei, ejqRpX, ejqei, Y y ` xRpRpX, eiqej , ejqei, Y yq

“

n
ÿ

i,j“1

p2 xRpej , eiqRpX, eiqej , Y y ` xRpRpX, eiqej , ejqei, Y yq

“

n
ÿ

i,j“1

pxRpej , eiqRpX, eiqej , Y y ´ xRpei, RpX, eiqejqej , Y yq

“

n
ÿ

i,j“1

xRpej , eiqRpX, eiqej , Y y `
ÿ

i,p“1

xRpei, epqRpX, eiqep, Y y

“ 0,

The first equality holds by switching i and j in the first term. Then the second equality uses the
Bianchi identity. Finally, to show the third equality, we expand RpX, eiqejq in a basis, permute
indices and then undo the expansion into a basis, but for another index, i.e.

n
ÿ

i,j“1

xRpei, RpX, eiqejqej , Y qy “
n
ÿ

i,j,p“1

xRpei, epqej , Y qy xRpX, eiqej , epy

“ ´

n
ÿ

i,j,p“1

xRpei, epqej , Y qy xRpX, eiqep, ejy

“ ´

n
ÿ

i,p“1

xRpei, epqRpX, eiqep, Y qy .

Putting this all together, we obtain

(5.2) pr∇T RicqpX,Y q “ p∆ RicqpX,Y q `
n
ÿ

i,j“1

2 xRpX, eiqej , Y yRicpei, ejq

loooooooooooooooooooomoooooooooooooooooooon

QpRmqRic

.

Furthermore, it is easy to trace this to obtain the evolution of the scalar curvature

(5.3) BtR “ ∆R` 2|Ric |2.
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In dimension 2, the Gauß curvature thus evolves by

BtK “ ∆K ` 2K2.

In dimension 3, because the Ricci curvature determines the full curvature tensor, we can analyze
the term QpRmqRic purely in terms of the Ricci curvature. Suppose that the sectional curvatures
are κ1, κ2, κ3. Then, in an appropriate basis ei, the Ricci curvature takes the form

Ric “

¨

˝

κ2 ` κ3

κ1 ` κ3

κ1 ` κ2

˛

‚:“

¨

˝

ρ1

ρ2

ρ3

˛

‚.

If s ­“ t, then

QpRmqRicpes, etq “ 2
3
ÿ

i,j“1

Rpes, ei, ej , etqRicpei, ejq “ 0

because the Ricci term is only nonzero if i “ j. Hence,

QpRmqRicpe1, e1q “ 2
3
ÿ

i“1

Rpe1, ej , ei, e1qRicpei, eiq

“ 2pκ3ρ2 ` κ2ρ3q

“ 2pρ2
2 ` ρ

2
3 ` ρ1ρ2 ` ρ1ρ3 ´ 2ρ2ρ3q.

From this, we see that

QpRmqRic “

2

¨

˝

ρ2
2 ` ρ

2
3 ` ρ1ρ2 ` ρ1ρ3 ´ 2ρ2ρ3

ρ2
1 ` ρ

2
3 ` ρ1ρ2 ` ρ2ρ3 ´ 2ρ1ρ3

ρ2
1 ` ρ

2
2 ` ρ1ρ3 ` ρ2ρ3 ´ 2ρ1ρ2

˛

‚.

Similarly, we see that the sectional curvatures of QpRmq are 2κ2
1 ` 2κ2κ3, 2κ

2
2 ` 2κ1κ3, and 2κ2

3 `

2κ1κ2.

6. Global curvature maximum principles

Here, it is convenient to rewrite (5.1) as

r∇T Rm “ ∆ Rm`Rm ˚Rm,

where Rm ˚Rm represents a term which is quadratic in the curvature tensor. From this, we have
that

Bt|Rm |2 “ 2
A

r∇T Rm,Rm
E

“ 2 x∆ Rm,Rmy ` xRm ˚Rm,Rmy

“ ∆|Rm |2 ´ 2|∇Rm |2 ` Rm ˚Rm ˚Rm .

Kato’s inequality says that |∇|Rm || ď |∇Rm |, so we have

Bt|Rm | ď ∆|Rm | ` Cn|Rm |2.

We now compute a similar expression for derivatives of Rm. It is important to remember that we

have shown that rRpT,Xq “ tr12p∇¨Rqp¨, Xq, so commuting a T and spatial r∇ covariant derivative
gives rise to a ∇Rm term. Thus,

r∇T∇Rm`∇Rm ˚Rm “ ∇r∇T Rm “ ∇∆ Rm`∇Rm ˚Rm “ ∆∇Rm`∇Rm ˚Rm .

From this, the same argument as before yields

Bt|∇Rm |2 ď ∆|∇Rm |2 ´ 2|∇2 Rm |2 ` Cn|∇Rm |2|Rm |.
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In general, we have that

Bt|∇m Rm |2 ď ∆|∇m Rm |2 ´ 2|∇m`1 Rm |2 ` Cm,n
ÿ

i`j“m

|∇i Rm ||∇j Rm ||∇m Rm |.

In all that follows in this section, M is a closed manifold so that we can apply the parabolic
maximum principle.

Lemma 6.1. Suppose that pgtqtPr0,T q is a Ricci flow and that |Rm | ď R0 at time t “ 0. Then

|Rm |p¨, tq ď
1

1
R0
´ Cnt

Proof. Recalling that Bt|Rm | ď ∆|Rm | ` Cn|Rm |2, we consider the comparison function

φptq “
1

1
R0
´ Cnt

which satisfies φp0q “ R0 and φ1 “ Cnφ
2. Then |Rm |´φ is a subsolution of B

Bt´∆´Cn “ 0 and it is
initially non-positive. By the maximum principle it remains non-positive, so |Rm |p¨, tq ď φptq. �

Corollary 6.2. If T ă 8 and pgtqtPr0,T q is a Ricci flow then t ÞÑ }Rm }L8 is either bounded or
limtÒT }Rmp¨, tq}L8 “ 8.

Recall that the scalar curvature evolves by

(6.1) BtR “ ∆R` 2|Ric |2 “ ∆R`
2

n
R2 ` 2|R̊ic|2

Lemma 6.3. Suppose that pgtqtPr0,T q is a Ricci flow and that R ě R0 at t “ 0. Then

Rp¨, tq ě
1

1
R0
´ 2

n t

Proof. Same as above. �

Remark 6.4. We get a number of immediate consequences of these two comparison lemmas.

(1) Certainly Rp¨, 0q ě R0 for a negative enough R0, so

Rp¨, tq ě
1

1
R0
´ 2

n t
ě ´

n

2t

which gives an ever improving lower bound.
(2) In particular any ancient Ricci flow pgtqtPp´8,0s must satisfy R ě 0.
(3) If pgtqtPr0,T q satisfies Rp¨, 0q ě R0 ą 0, then T ă n

2R0
.

(4) In particular for any long time existent flow pgtqtPr0,8q and any t ě 0 we have minRp¨, tq ď 0.
(5) Every eternal flow pgtqtPR is Ricci-flat.

Proof of last claim. Since the flow is ancient we know that R ě 0 at all times. Notice that it
is impossible for maxRp¨, tq ą 0 at any time t, because then by the strong maximum principle
we would have minRp¨, t1q ą 0 for all t1 ą t and the flow could only exist for a finite time– a

contradiction. Therefore R ” 0, so from (6.1) we also have |R̊ic| ” 0, so Ric ” 0. �

Lemma 6.5. In two dimensions the condition K ď 0 is preserved by Ricci flow.

Proof. In two dimensions the Ricci tensor is traceless so we have an exact evolution BtR “ ∆R`R2,
and the result follows from PDE. �

We now digress into discussing applying maximum principles to essentially periodic solutions of
Ricci flow.
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Definition 6.6. A Ricci flow pgtqtPrt1,t2s is a breather if gt2 “ λφ˚gt1 for some λ ą 0 and some
diffeomorphism φ of the background manifold. We classify breathers into three categories:

(1) λ “ 1 are the steady breathers,
(2) λ ă 1 are the shrinking breathers, and
(3) λ ą 1 are the expanding breathers.

Notice that Einstein manifolds are all examples of breathers.

Remark 6.7. In some ways Ricci flow is a tool that ideally simplifies manifolds so we can study
them. Breathers would provide obstructions to this study, because their existence means that our
Ricci flow is in some sense periodic and does not simplify our geometry. We want to study breathers
and understand them better.

It turns out that it’s very easy to discard closed steady and expanding breathers that aren’t in
essence trivial, i.e. Einstein manifolds. Perelman [Per02] proved this using the F functional but in
fact we can prove it using the curvature comparison theorems from the previous section. Discarding
non-trivial shrinking breathers is more subtle and requires finer tools.

Remark 6.8. The concept of renormalized volume is important. If pgtqtPr0,T q is a Ricci flow then
we write V ptq “ volpM, gtq for the volume at time t. From the evolution of the volume element and
scalar curvature comparison we know that

V 1ptq “

ż

M
d 9µt “ ´

ż

M
Rdµt ď

n

2t

ż

M
dµt “

n

2t
V ptq

Renormalized volumes account for periodic scaling in breathers. We define sV ptq “ t´n{2V ptq.
Certainly

sV 1ptq “ ´
n

2
t´1´n{2V ptq ` t´n{2V 1ptq ď 0

so for example limtÒ8
sV ptq exists for all long time existent flows. Also note that sV ptq “ volpM, t´1gtq.

The following lemma is key when discarding closed steady and expanding breathers.

Lemma 6.9. A steady breather gives rise to an eternal, periodic Ricci flow pgtqtPR; i.e., there exists
∆t ą 0 and a diffeomorphism φ so that gt`∆t “ φ˚gt for all t P R. An expanding (resp. shrinking)
breather gives rise to a long time existent (resp. ancient) Ricci flow such that gλt “ λφ˚gt for a
fixed λ ą 0 and all t.

Proof. The steady case is clear: patch the breathers together. In the expanding case let ∆ “ t2´t1,
t˚k “ λk, and consider the time intervals rt˚k, t

˚
k`1s with the associated rescaled Ricci flow

t ÞÑ
t˚k`1 ´ t

˚
k

∆t
gt1` ∆t

t˚
k`1

´t˚
k

pt´t˚k q

Then patch these flows together. The shrinking case is identical. �

Corollary 6.10. Closed steady breathers are Ricci flat. Closed expanding breathers are Einstein
manifolds, Ric “ λg, with λ ă 0.

Proof. We explained that steady breathers give rise to an eternal Ricci flow, and we’ve already
shown that eternal Ricci flows on closed manifolds necessarily yield Ricci flat metrics.

In the expanding case construct a long time existent breather as described. We’ve seen that
sV ptq “ t´n{2V ptq is non-increasing. Observe further that

sV p1q “ V p1q “ volpM, g1q “ λ´n{2 volpM, gλq “ sV pλq ď sV p1q

and therefore equality holds, i.e. equality holds in the scalar curvature comparison step which
means that R ” ´ n

2t . Looking back at (6.1) we see once again that |R̊ic| ” 0, so again we are on
an Einstein manifold. �
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7. Curvature estimates and long time existence

The following global curvature estimates were proven by Hamilton [Ham82].

Theorem 7.1. Let pgtqtPr0,T q be a Ricci flow on a closed manifold M . If |Rm | ď A0 on M ˆr0, T q
then for all m ě 1

(7.1) |∇m Rm | ď Cn,mA0

ˆ

1

tm{2
`A

m{2
0

˙

Proof. When m “ 1 we claim that it suffices to prove that

(7.2) |∇Rm | ď C
A0
?
t

for times t ď 1
A0

and that then (7.1) follows for all times. The only concern is what happens for

t ą 1
A0

. In that case start the flow at time t0 “ t ´ 1
A0

so that it effectively runs for 1
A0

units of

time, thereby bounding (due to the ”short time” estimate (7.2))

|∇Rm |p¨, tq ď C
A0

1{
?
A0

“ C A
3{2
0

which is certainly dominated by the right hand side in (7.1), and the claim follows.
Now to prove (7.2) recall that

Bt|Rm |2 ď ∆|Rm |2 ´ 2 |∇Rm |2 ` C |Rm |3

Bt|∇Rm |2 ď ∆|∇Rm |2 ´ 2 |∇2 Rm |2 ` C |∇Rm |2 |Rm |

Consider the auxiliary function F “ t |∇Rm |2`B |Rm |2 for a constant B ą maxt1, Cu. We have

BtF ď t∆|∇Rm |2 ` C t |∇Rm |2 |Rm | ` |∇Rm |2

`B∆|Rm |2 ` CB |Rm |3 ´ 2B |∇Rm |2

ď ∆F ` C t |∇Rm |2 |Rm | ` |∇Rm |2

`BC |Rm |3 ´ 2B |∇Rm |2

ď ∆F ´B |∇Rm |2 ` C T |∇Rm |2A0 ` CBA
3
0

ď ∆F ` CBA3
0

By the maximum principle, F ptq ď maxF p¨, 0q ` t CB A3
0 ď pC ` 1qBA2

0, so

|∇Rm |2 ď pC ` 1qB
A2

0

t

as claimed, and the case m “ 1 follows.
The case m “ 2 is more or less similar. We fix τ ą 0 and assume that on rτ{2, τ s we have

|∇Rm | ď C A0?
τ
. The evolution equations we care about are:

Bt|∇Rm |2 ď ∆|∇Rm |2 ´ 2 |∇2 Rm |2 ` C |∇Rm |2 |Rm |

Bt|∇2 Rm |2 ď ∆|∇2 Rm |2 ´ 2 |∇3 Rm |2 ` C |∇2 Rm |2 |Rm | ` C |∇2 Rm | |Rm |2

and the auxiliary function is

G “ pt´ τq |∇2 Rm |2 `H |∇Rm |2

After a similar computation we see BtG ď ∆G`C
A2

0
τ2 and proceed along the same lines. The cases

m ě 3 are handled by similar arguments. �

As a corollary of this global curvature estimate we get the long time existence theorem.
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Theorem 7.2 (Long time existence). If pgtqtPr0,T q is a Ricci flow on a closed manifold that is
maximally extended up to T ă 8, then limtÒT }Rmp¨, tq}L8 “ 8. Conversely, if |Rm | is uniformly
bounded then we can continue to extend the Ricci flow.

Proof. If this were false then from a previous section it follows that |Rm | would be uniformly
bounded on r0, T q and therefore by the theorem above, so would all the derivatives |∇m Rm |,
m ě 0. Since Btgt “ ´2 Ricgt we can bound all evolutions of all derivatives of the metric tensors.
It follows that the gt converge in C8 to a smooth limit metric tensor gT ; see [Ham82] for details.
At this point may restart the flow at time T by short time existence and contradict the maximality
of T . �

Remark 7.3. A similar long time existence characterization holds true with Ric in place of Rm
by work of Šešum [Šeš05]; namely, on a maximal time interval |Ric | is unbounded. It is not known
whether or not it holds with scalar curvature R.

We state without proof the local curvature estimates due to Shi [Shi89].

Theorem 7.4 (Shi’s Estimates [Shi89]). Let pgtqtPr0,T q be a Ricci flow on a complete manifold M

(not necessarily closed). Fix a point px, tq in spacetime. If r ą 0 is such that rt´ r2, ts Ă r0, T q, the
ball Bpx, t, rq ĂM centered at x with radius r (at time t) is relatively compact, and |Rm | ď r´2 on
the parabolic neighborhood P px, t, r,´r´2q “ Bpx, t, rqˆrt´r2, ts, then |∇m Rm |px, tq ď Cmr

´m´2.

8. Vector bundle maximum principles

Maximum principles come up very often in evolution equations. In this section we will prove
general maximum principles on vector bundles. Let’s begin by reviewing the classical maximum
principles.

Theorem 8.1 (Weak maximum principle). Let pM, gq be a closed manifold, T ą 0, and suppose
u P C8pM ˆ r0, T qq satisfies

Btu “ ∆Mu` φpuq

Then
d

dt
maxup¨, tq ď φpmaxpu, tqq

in the barrier sense. If F ptq is such that up¨, 0q ď F p0q and F 1ptq ě φpF ptqq, then up¨, tq ď F ptq for
all t ě 0.

The strong maximum principle is the rigidity version of the weak maximum principle:

Theorem 8.2 (Strong maximum principle). Let pM, gq be connected and complete, T ą 0, and u,
F as above. If upx, tq “ F ptq for some x PM and t ą 0, then

d

dt`
max
M

up¨, tq “ φpmax
M

up¨, tqq

in the barrier sense and in fact up¨, t1q ” F pt1q for all t1 ď t.

Example 8.3. If u P C8pM ˆ r0,8qq is such that Btu “ ∆u and up¨, 0q ě 0 on a closed manifold
pM, gq, then the weak maximum principle says that u ě 0 at all times. The strong maximum
principle says that u ą 0 at all positive times, unless u ” 0.

Now we proceed to the vector bundle setting; in what follows M is a compact manifold, possibly
with boundary, and pgtq is an arbitrary smooth family of Riemannian metrics on M . The setup is:

(1) E ÝÝÑ M ˆ r0, T q is a Euclidean vector bundle with a metric (compatible) connection ∇.
We write ∇B{Bt for the lift of the spacetime vector field B

Bt to the total space E.
(2) C Ă E is a subbundle of closed convex sets Cx,t “ C XEx,t Ă Ex,t, which we assume to be

parallel in the spatial direction.
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M ˆ r0, T q

∇B{Bt

Figure 5. Vector bundle E ÑM ˆ r0, T q.

(3) Φ is a smooth vector field on each fibre Ex,t (i.e. a vertical vector field of E) such that the
flow of ∇B{Bt ` Φ preserves C.

(4) u P C8pM ˆ r0, T q;Eq such that

∇B{Btu “ ∆u` Φpuq

Example 8.4 (Ricci flow). We can suppose pgtqtPr0,T q is a Ricci flow, E “ Sym2 T
˚M with the

connection induced from the Uhlenbeck trick so that

∇B{Bt Ric “ ∆ Ric`QpRicq.

We will later see that C “ tnon-negative definite symmetric two tensorsu is preserved in the sense
described above for three-manifolds.

Example 8.5 (Scalar case). We can suppose the metric g is fixed, E is the trivial line bundle, φ is
as before (in the scalar maximum principles), and Cx,t “ rF ptq,8q. Hence, we recover the scalar
maximum principle.

Theorem 8.6 (Weak maximum principle, vector bundles). In the setting (1)-(4) above, if u only
takes values in C on the parabolic boundary

BparpM ˆ r0, T qq “M ˆ t0u Y BM ˆ r0, T q

then u only takes values in C throughout M ˆ r0, T q.

Proof. The proof goes by contradiction. Define

spx, tq “ distpupx, tq, Cx,tq

Sptq “ max
M

sp¨, tq

and suppose, for the sake of contradiction, that Spt0q ą 0 for some t0 ą 0. Denote by t ÞÑ ppx, tq,
t ě t0, the flow of the vector field ∇B{Bt`Φ starting at the closest point to upx, t0q in Cx,t0 . Recall
that this flow never escapes C.

C

M ˆ r0, T q

‚
ppx, t0q

∇B{Bt ` Φ

‚
upx, t0q

∇B{Bt `∇B{Btu
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For t ě t0 we clearly have spx, tq ď distpppx, tq, upx, tqq fi pspx, tq, with equality at time t0. We
will use ps as a barrier function. We compute

Bps

Bt
px, tq “

@`

∇B{Bt `∇B{Btupx, tq
˘

´
`

∇B{Bt ` Φpppx, tqq
˘

,∇ distpppx, tq, ¨q
D

“
@

∇B{Btupx, tq ´ Φpppx, tqq,∇ distpppx, tq, ¨q
D

If pSptq fi maxM psp¨, tq, then Sptq ď pSptq, Spt0q “ pSpt0q, and

dpS

dt`
pt0q “ max

"

Bps

Bt
px, t0q : pspx, t0q “ pSpt0q

*

in the barrier sense. If x0 PM is such that psps0, t0q “ pSpt0q, then

Bps

Bt
px0, t0q “

@

∇B{Btupx0, t0q ´ Φpppx0, t0qq,∇ distpCx0,t0 , ¨q
D

“
@

∇B{Btupx,t0q ´ Φpupx0, t0qq,∇ distpCx0,t0 , ¨q
D

` xΦpupx0, t0qq ´ Φpppx0, t0qq,∇ distpCx0,t0 , ¨qy

ď x∆upx0, t0q,∇ distpCx0,t0 , ¨qy ` |Φpupx0, t0q ´ Φpppx0, t0qq|

ď x∆upx0, t0q,∇ distpCx0,t0 , ¨qy ` C spx0, t0q

Recall that
0 ě ∆Mpspx0, t0q ě ∆Mspx0, t0q “ ∆ rdistpupx, t0q, Cx,t0qsx“x0

“ x∆upx0, t0q,∇ distpCx0,t0 , ¨qy

because Cx,t0 is spatially parallel. Plugging this back into the inequality for Bps
Bt we see

Bps

Bt
px0, t0q ď C spx0, t0q

so
dS

dt`
pt0q ď

dpS

dt`
pt0q ď C Spt0q

so Spt0q ď eCt0Sp0q “ 0, a contradiction. �

There is a corresponding strong maximum principle for vector bundles.

Theorem 8.7 (Strong maximum principle, vector bundles). Let M be connected and complete,
and pgtq, E, C, Φ, u be as in the weak maximum principle. Assume that u only takes values in C.
If upx0, t0q P BCx0,t0 at some point px0, t0q then u only takes values in BC throughout M ˆ r0, t0s.

Sketch of the proof. Recall that u P Cx,t for all px, tq PM ˆr0, T q, by the weak maximum principle,
so spx, tq :“ distpupx, tq, BCx,tq ě 0 on M ˆ r0, T q. The idea is to use the weak maximum principle

on the bundle rE “ E ‘ R. Set

rC “ tpu, hq P rEx,t : distpu, BCx,tq ě h ě 0u.

Claim. rC is fiberwise convex.

Claim. rC is preserved by rΦ :“ ∇B{Bt ` Φ´B B
Bh , where B is chosen sufficiently large.

We will prove the second claim. Choose B large enough so that

DΦpupx,tqq distp¨, BCx,tq ě ´B distp¨, BCx,tq.

which we can do by the Lipschitz property of Φ. Now, the weak maximum principle shows that
#

∇B{Btu “ ∆u` Φpuq
B
Bth “ ∆h´Bh
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preserves the condition s ě h ě 0. Now, the conclusion follows from the scalar strong maximum
principle. �

A classical application of the strong maximum principle is the study of the borderline cases in
the preservation of Ric ě 0 in three-manifolds.

Proposition 8.8. Let pgtqtPr0,T q be a Ricci flow on a closed M3. If Ricgt0 ě 0 then Ricgt ě 0 for
all t ě 0. Moreover, either

(1) Ricgt ą 0 for all t ą 0, or
(2) pM, gtq is flat, or
(3) M is a quotient of N ˆ R1 for N a topological 2-sphere.

Proof. We take E “ Sym2 T
˚M , C to be the non-negative definite symmetric two tensors (depend-

ing on time), which is fibre-wise convex, and u “ Ric. We know that

∇B{Bt Ric “ Ric`QpRicq

To check that C is preserved by Q we look at the associated ODE 9Ric “ QpRicq. When we
diagonalize Ric “ diagpρ1, ρ2, ρ3q at a point, the ODE is

9ρ1 “ ρ2
2 ` ρ

2
3 ` ρ1pρ2 ` ρ3q ´ 2ρ2ρ3 “ pρ2 ´ ρ3q

2 ` ρ1pρ2 ` ρ3q

(coupled with the obvious the symmetric expressions), and non-negativity is clearly preserved.
Hence, the weak maximum principle guarantees the first statement, namely that Ricgt ě 0 for all
t ě 0. Assume that (1) does not apply. Then, for some x0 PM and t0 ą 0, NullpRicx0,t0q ­“ H. By
the strong maximum principle, we have that NullpRicx,tq ­“ H for all x P M and t ď t0. Choose
X P TxM with X ­“ 0 and

Ricx,tpX,Xq “ 0.

We may extend X to a neighborhood in space-time. We may compute, at x, t,

0 “ BtpRicpX,Xqq “ p∇B{Bt RicqpX,Xq ` 2 Ricp∇B{BtX,Xq “ p∇B{Bt RicqpX,Xq.

The second equality follows because RicpXq is easily seen to vanish as well. Hence,

0 “ p∇B{Bt RicqpX,Xq “ p∆ RicqpX,Xq `QpRicqpX,Xq.

Both terms on the right hand side are non-negative, and thus must vanish. Now, for a vector field
V defined near x, t, we have

0 “ ∇V pRicpX,Xqq “ p∇V RicqpX,Xq ` 2 Ricp∇VX,Xq “ p∇V RicqpX,Xq.

Finally, we compute

p∇2
V,V RicqpX,Xq “ ∇V pp∇V RicqpX,Xqq ´ 2p∇V Ricqp∇VX,Xq

“ ∇2
V,V pRicpX,Xqq ´ 4∇V pRicp∇VX,Xqq

` 2 Ricp∇2
V,VX,Xq ` 2 Ricp∇VX,∇VXq

ě 2 Ricp∇VX,∇VXq ě 0.

Now, using these computations, along with the fact that QpRicq ě 0, we see that

0 “ p∇B{Bt RicqpX,Xq “ p∆ RicqpX,Xq
looooooomooooooon

ě0

`QpRicqpX,Xq.

Thus, QpRicqpX,Xq “ 0. Hence, if we write Ricx,t “ diagp0, ρ2, ρ3q, we have that ρ2
2`ρ

2
3´2ρ2ρ3 “ 0,

so ρ2 “ ρ3.
For t ď t0 and x PM we write Ricx,t “ diagp0, ρpx, tq, ρpx, tqq.
Case 1, ρpx, t1q “ 0 for some px, t1q P M ˆ r0, t0s: Then Rpx, t1q “ 0. The (scalar) strong

maximum principle implies that R ” 0 on M ˆ r0, t1s. This implies that Rm ” 0, so pM, gtq is flat
(because we are in three dimensions).
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Case 2, ρpx, tq ą 0 on M ˆp0, t0s: In this case, we see that NullpRicx,tq ” 1 on M ˆp0, t0s. We
may find a unit vector field Y in some open neighborhood of spacetime so that RicpY, Y q “ 0. As
above, we may compute

p∇B{Bt RicqpY, Y q “ 0

p∇V RicqpY, Y q “ 0

p∇2
V,V RicqpY, Y q ě 2 Ricp∇V Y,∇V Y q ě 0.

The evolution equation for Ric yields p∆ RicqpY, Y q “ QpRicqpY, Y q “ 0. In particular, if we choose
an orthonormal basis at x, t diagonalizing Ric “ diagp0, ρ, ρq, then

0 “
3
ÿ

i“1

Ricp∇eiY,∇eiY q “ ρ2
3
ÿ

i“1

|∇eiY |
2.

This implies that Y is parallel, i.e. ∇Y “ 0. Thus, for α :“ Y 5, dα “ d˚α “ 0, so H1pM,Rq ­“ 0.

Thus M̃ is non-compact, and in particular M̃ “ N ˆ R. �

9. Curvature pinching and Hamilton’s theorem

Throughout this section we continue to assume pM3, gtq is closed. The following two lemmas
follow from the weak maximum principle and are left as exercises:

Lemma 9.1. For any ε P r0, 1s the closed, convex subbundle

tRic : ρ1 ě ερ3 ě 0u

is preserved by Ricci flow. Here 0 ď ρ1 ď ρ2 ď ρ3 are the eigenvalues of the Ricci tensor.

Lemma 9.2. For all ε P p0, 1s there exists δ “ δpεq ą 0 such that the closed, convex subbundle

tRic : ρ3 ´ ρ1 ď ρ1´δ
3 , ρ1 ě ερ3 ě 0u

is preserved by Ricci flow.

Remark 9.3. The second lemma is going to be particularly important. If we divide through by
ρ3 ą 0 we see that

(9.1) 0 ď 1´
ρ1

ρ3
ď ρ´δ3

In particular if ρ3 Ñ8 then ρ1

ρ3
Ñ 1, i.e. the eigenvalues are automatically pinched when curvature

is large in the case of three-manifolds with positive Ricci curvature.

In the same paper that he introduced Ricci flow, Hamilton classified closed three-manifolds with
positive Ricci curvature as being quotients of the sphere.

Theorem 9.4 (Hamilton’s Theorem, [Ham82]). If pM3, gq is a closed three-manifold with Ric ą 0

then M3 is a quotient of S3. The renormalized metrics g˚t “ V ptq´2{3gt of the corresponding Ricci
flow pgtqtPr0,T q, g0 “ g, converge smoothly to the round metric as t Ò T provided T is the maximal
time of existence.

Proof. The proof consists of a sequence of steps. First of all by compactness we choose ε ě 0 with
ρ1 ě ερ3. By rescaling parabolically if necessary, we can assume that ρ3 ă 1 at t “ 0. Observe
that since Rmin ą 0 at time t “ 0, the flow becomes singular in finite time: T ă 8.

Claim 9.5. There exists a sequence tk Ò T along which Rminptkq Ñ 8. In fact this is true whenever
we choose tk Ò T , xk PM such that Rpxk, tkq Ò 8 and R ď 2Rpxk, tkq on M ˆ r0, tks.
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Proof of claim. If we label Qk fi Rpxk, tkq then the global curvature estimates give:

|∇Rmtk | ď CQ
3{2
k , |∇2 Rmtk | ď CQ2

k.

The goal is to capitalize on our control of the derivatives to show that curvature being large at
pxk, tkq forces it to be large everywhere at tk.

Certainly if the diameter is not too large, i.e. when diamtkM ď Q
´1{2´δ{2
k (with δ as in the

previous lemma), we have by interpolation that

|Rpy, tkq ´Rpxk, tkq| ď CQ
3{2
k Q´1{2´δ{2 “ CQ1´δ{2

for all y PM . Since Rpxk, tkq “ Qk, for k " 1 we have

p1´ CQ
´δ{2
k qQk ď Rpy, tkq ď p1` CQ

´δ{2
k qQk

and indeed curvature is large throughout.

When the diameter is large, i.e. diamtkM ě Q
´1{2´δ{2
k we need a different approach. By the

pinching lemma above the traceless Ricci tensor satisfies |R̊ictk | ď CR1´δ
tk

. By interpolation again
we have

|∇R̊ictk | ď CQ1´δ
k Q

1{2`δ{2
k ` CQ2

kQ
´1{2´δ{2
k “ CQ3{2´δ{2.

By the Bianchi identities

divpR̊ictkq “ divpRictkq ´
1

3
divpRgtkq “

1

2
∇R´ 1

3
∇R “ 1

6
∇R

and so |∇Rtk | ď CQ
3{2´δ{2
k . As long as k " 1, we get

Rtk ě
1

2
Qk and Rictk ě

1

10
Qk on Bk “ Bpxk, tk, 104Q

´1{2
k q

the latter inequality following from positivity. By Myer’s theorem and the lower bound on Ricci

curvature, the diameter of the ball is in fact no larger than
?

20πQ
´1{2
k ă 104Q

´1{2
k , i.e. Bk ” M

and therefore diamtkM ď
?

20πQ
´1{2
k . Since |∇R| ď CQ3{2´δ{2, we conclude that

|Rpy, tkq ´Rpxk, tkq| ď CQ
3{2´δ{2
k

?
20πQ

´1{2
k “ CQ

1´δ{2
k

for all y PM . As long as k " 1 we in fact have

p1´ CQ
´δ{2
k qQk ď Rpy, tkq ď p1` CQ

´δ{2
k qQk

like we did in the context of small diameters.
In any case, Rminptkq Ñ 8 as claimed. �

Remark 9.6. Notice that at this point as a direct consequence of pinching, (9.1), we get by the
sphere theorem (resp. differentiable sphere theorem) that M3 is homeomorphic (resp. diffeomor-
phic) to a quotient of the sphere. This will not be relevant in our proof but is worth mentioning.

Claim 9.7. There exists T0 ă T such that R ď 2Rmaxptq on M ˆ r0, ts as long as t ě T0.

Proof. If this were false then we could pick times t1k, t
˚
k Ò T , t1k ă t˚k, and points yk P M such that

Rpyk, t
1
kq ą 2Rmaxpt

˚
kq and R ď 2Rpyk, t

1
kq on M ˆ r0, t1ks. By applying the previous claim to the

sequence t1k we see for k " 1 that

Rminpt
1
kq ě

9

10
Rmaxpt

1
kq ě

18

10
Rmaxpt

˚
kq ě

18

10
Rminpt

˚
kq ě

18

10
Rminpt

1
kq

The first inequality is pinching, the second is our choice Rpyk, t
1
kq ą 2Rmaxpt

˚
kq, the third trivial,

and the fourth follows because t ÞÑ Rminptq is non-decreasing since BtR “ ∆R` 2
3R

2`2|R̊ic|2. This
chain of inequalities is clearly impossible. �
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Since Rmaxptkq Ñ 8 along a sequence, the latter claim guarantees that Rmaxptq Ñ 8 as t Ò T .
By repeating the argument of the first claim we see that

p1´ CR´δ{2py, tqqRpy, tq ď Rpz, tq ď p1` CR´δ{2py, tqqRpy, tq

for all pairs y, z PM and t ě T0.

Claim 9.8. We have Rminptq ď
1

2
3
pT´tq

for all t P p0, T q, and Rmaxptq ď
2

2
3
pT´tq

for t near T .

Proof. We use a comparison principle on BtR “ ∆R` 2
3R

2` 2|R̊ic|2 ě ∆R` 2
3R

2. By starting the
PDE at t1 P p0, T q we get the standard barrier comparison estimate

Rminptq ě
1

1
Rminpt1q

` 2
3pt1 ´ tq

Since we know to begin with that the flow lives through t “ T , the lower barrier cannot have
crossed 8 before that instant. Therefore

1

Rminpt1q
`

2

3
pt1 ´ T q ě 0 ñ Rminpt1q ď

1
2
3pT ´ t1q

Since t1 P p0, T q was arbitrary, the first part of the claim follows. The second part follows immedi-
ately by pinching. �

If we now rescale to g˚t “ V ptq´2{3gt then

Btg
˚
t “ ´2V ptq´2{3 Ricgt ´

2

3
V ptq´5{3 9V ptq gt

“ ´2V ptq´2{3 Ricgt `
2

3
V ptq´5{3

”

ż

M
R
ı

gt

“ ´2V ptq´2{3 Ricgt `
2

3
V ptq´2{3Rpx, tq gt `

2

3
V ´5{3

”

ż

M
R´Rpx, tq

ı

gt

“ ´2V ptq´2{3 R̊icgt `
2

3
V ptq´5{3

”

ż

M
R´Rpx, tq

ı

gt

We’ve already shown how to bound the norms of R̊ic and R´Rpx, tq, so we get

|Btg
˚
t |gt ď 2V ptq´2{3 ¨ CR1´δpx, tq `

2

3
V ptq´5{3 ¨ CRpx, tq1´δ{2V ptq

ď CRpx, tq1´δ{2V ptq´2{3

assuming (as we may) that R is large. By rescaling we conclude |Btg
˚
t |g˚t

ď CRpx, tq1´δ{2. For t

near T the final claim above yields

|Btg
˚
t |g˚t

ď
C

pT ´ tq1´δ{2

i.e. the singularity is integrable, so the g˚t converge continuously to a metric g on M3 as t Ò T . By
the higher curvature estimates we can control all derivatives and boost the convergence to C8; see
[Ham82, §14, 17] for more details. Finally observe that the traceless Ricci tensor of gt converges to
zero by pinching, and by scale invariance so does that of g˚t . Therefore the limit metric g on M3 is
Einstein and positively curved, so it is a round sphere. �
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10. Hamilton-Ivey pinching

We have already come across various curvature conditions preserved by Ricci flow. Examples of
such are:

(1) non-negative Ricci, Ric ě 0,
(2) non-negative sectional curvature, sec ě 0,
(3) Ric ě cg, and

(4) Hamilton’s condition tRic : ρ3 ´ ρ´ 1 ă ρ1´δ
3 , ρ1 ě ερ3 ě 0u.

In this section we concern ourselves with another pinching condition: Hamilton-Ivey pinching.

Theorem 10.1 (Hamilton-Ivey pinching). Let pgtqtPr0,T q be a Ricci flow on a closed three-manifold

M3 and let px, tq PM ˆ p0, T q. There exists an X ą 0, depending on px, tq, such that

secx,t ě ´X, Rpx, tq ě ´
3

2t
, Rpx, tq ě 2Xplogp2Xtq ´ 3q

Proof. This consists of checking that the subbundle cut out by the conditions above is closed,
convex, and preserved by the flow. We omit the proof. �

Definition 10.2. We say that pM3, gq has φ-positive curvature if for all x P M there exists an
X ą 0 depending on x such that secx ě ´X, Rpxq ě ´3

2φ, and R ě 2X
“

logp2Xφ´1q ´ 3
‰

.

Remark 10.3. With this definition in mind, the Hamilton-Ivey pinching theorem can be restated
as: “1{t-positive curvature is preserved by Ricci flow.”

Corollary 10.4. If pM3, pgtqtPp´8,0sq is an ancient Ricci flow on a closed manifold then secpx,tq ě 0
for all x, t.

Proof. Let T " 1 and start the flow at t0 “ ´T ; i.e., look at rgt “ gt´T , t P r0, T q. By Hamilton-Ivey
pinching, rgt has 1{t-positive curvature, so gt has 1{pt ` T q-positive curvature. The idea is to see
how we can let T Ñ8.

We proceed by contradiction. If Y “ ´min secx,t ą 0 at some px, tq then by Hamilton-Ivey
pinching

Rpx, tq ě inf
XPrY,8q

2X
“

logp2Xpt` T qq ´ 3
‰

The value of Y is fixed (it only depends on x, t), while we are free to take T as large as we wish.
For T " 1 sufficiently large depending on Y the infimum above is attained at X “ Y , and thus

Rpx, tq ě 2Y
“

logp2Y pt` T qq ´ 3
‰

Ñ8 as T Ò 8

which is impossible and this gives the required contradiction. �

Remark 10.5. Recall that we’ve already shown that ancient closed solutions have non-negative
scalar curvature in all dimensions. This three-dimensional result can be viewed as an improvement
in a special case. It will also help later in our study of singularity models.

Recall that we’ve already classified steady and expanding closed breathers as being Einstein
while remarking that shrinking breathers are more subtle. With Hamilton-Ivey pinching we can
classify shrinking breathers as being Eintein as well:

Corollary 10.6. Shrinking three-dimensional closed breathers are Einstein manifolds, Ric “ λg,
with λ ą 0.

Proof. We have already explained that we can arrange for shrinking breathers to be ancient solutions
of Ricci flow with gλkt “ λkpφkq˚gt. In the result above we showed that sec ě 0, and therefore
Ric ě 0. By the strong maximum principle this means one of two things can happen:
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(1) Ric ą 0. Then 0 ď ρ3´ ρ1 ď ρ1´δ
3 as discussed in the previous section. Furthermore gλkt “

λkpφkq˚gt, so Rp¨, λktq “ λ´kRp¨, tq, so Rminptq Ñ 8 as t Ò 0 and therefore ρ1 “ ρ2 “ ρ3 by
Hamilton’s pinching. This means we’re on a round sphere, which is Einstein.

(2) M – S2 ˆ R{Γ or M is Ricci flat. In either case we see that diampM, gtq stays bounded
away from zero as t Ò 0, which contradicts being on a shrinking breather.

�

11. Ricci Flow in two dimensions

Ricci flow in two dimensions is in some sense harder than in three dimensions because we don’t
have tools such as pinching available to us anymore: we can’t control ratios of sectional curvatures
because there’s only one at each point. On the other hand we have other tools to our avail, such
as uniformization. In two dimensions Ricci flow is the same as unnormalized Yamabe flow:

Btgt “ ´2 Ricgt “ ´Rgt

Remark 11.1. Please observe that the flow preserves the conformal class of the original metric,
i.e. it preserves the complex structure. Sometimes it is referred to as Kähler Ricci flow, when in
two dimensions.

In three dimensions we cannot hope to find exact values for the maximal time of existence T ,
but in two dimensions we can do better. If M2 is closed then one of three things can happen.

(1) χpMq ą 0. The the flow exists up until a maximum point T “ volpM,g0q

4πχpMq and then turns into

a point. Upon renormalization we have

pT ´ tq´1gt Ñ 2ground as t Ò T

(2) χpMq “ 0. The flow exists forever and converges to a flat metric as tÑ8.
(3) χpMq ă 0. The flow exists forever and upon renormalization:

t´1gt Ñ 2ghyp as t Ò 8

For a treatment of Ricci flow in two dimensions one can refer to [Ham88], [Cho91].

12. Radially symmetric flows in three dimensions

Let’s consider M “ S3 “ tNu Y S2 ˆ I Y tSu with initial metric

g0 “ p1` f
1psq2qds2 ` fpsq2gS2

We look to assign an f that looks similar to:

s

f

r1
r3

r2

Theorem 12.1 ([AK04]). The flow above develops a singularity in finite time.

(1) If r1 « r2 « r3 then the evolution resembles a shrinking potato shape, later a sphere.
(2) If r2 ! r1, r3 then it resembles two dumbbells with a connecting neck that pinches off.
(3) If r3 ! r2 ! r1 then the flow develops a ”nose”.
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Figure 6. Instance of r1 « r2 « r3, a shrinking potato.

Figure 7. Instance of r2 ! r1, r3 with a collapsing neck.

Figure 8. Instance of r3 ! r2 ! r3 with a nose. If we blow up at the neck we will
see S2 ˆ R. If we blow up near the tip of the nose we will see a Bryant soliton.

13. Geometric compactness

The contents of this section can be found with detailed proofs in [Bam07]. We first define
Gromov–Hausdorff convergence

Definition 13.1. For pXk, dkq metric spaces, we say that they converge in the Gromov–Hausdorff

sense, i.e., pXk, dkq
GH
ÝÝÑ pX8, d8q if there exist φk : X8 Ñ Xk, which are “approximate isometries”

in the sense that

Bεkpimpφkqq “ Xk

for some εk Ñ 0 and if

}φ˚kdk ´ d8}L8pX2
8q
Ñ 0,

as k Ñ8.

A simple example of this is 1
kZ

n GH
ÝÝÑ Rn. The maps φk are given by “rounding down.” Another

example is S1
1
k

ˆR GH
ÝÝÑ R. In both of these examples, we have suppressed the metric in our notation.

We remark that we will often want to only consider complete metric spaces.
This notion is not very well behaved when considering non-compact spaces/limits. For example,

suppose we are interested in the following sequence of cusp metrics on Tn´1 ˆ R

gk :“ ds2 ` e´2s`kgTn´1 .

We might ask: what does this sequence converge to in the Gromov–Hausdorff topology? Recall
that gH3 “ ds2 ` e´2sgRn´1 is one model for the hyperbolic metric. So, as k becomes large, we can
think of this as dilating the Tn´1 factor, so the sequence should be converging to hyperbolic space.
On the other hand, note that all of these metrics are isometric, using the shift s ÞÑ s´ k

2 . Hence, the
sequence also should be converging to pM, g1q. Shifting even further back, the sequence will look
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like its converging to R! We note that none of these limits actually exist in the Gromov–Hausdorff
sense as defined above, but we can give a definition so that this makes sense.

Definition 13.2. We say that pXk, dk, xkq converges in the pointed Gromov–Hausdorff sense if

there is Rk ą 0, so that Rk Ñ8, εk ą 0, so that εk Ñ 0 and maps φk : BX8
Rk
px8q Ñ Xk so that

(1) BXk
εk
pφkpB

X8
Rk
px8qqq Ą BXk

Rk
px8q

(2) }φ˚kdk ´ d8}L8pX2
8q
ă εk

(3) dkpxk, φkpx8qq ă εk.

The fundamental importance of the Gromov–Hausdorff topology is the nice compactness prop-
erties enjoyed by Riemannian manifolds. For example,

Theorem 13.3. For pMk, gkq Riemannian manifolds such that

(1) dimMk ď N ă 8

(2) diampMk, gkq ď D ă 8
(3) Ricgk ě ´K.

Then pMk, gkq sub-converges in the Gromov–Hausdorff sense to a complete metric space pX8, d8q
(any convergent subsequence has a unique limit). Moreover, the Hausdorff dimension of pX8, d8q
is not more than lim infkÑ8 dimMk ď N .

We may drop the diameter bound if we we move to pointed Gromov–Hausdorff topology

Theorem 13.4. For pMk, gk, xkq pointed Riemannian manifolds such that

(1) dimMk ď N ă 8

(2) Ricgk ě ´KpRq on BMk
R pxkq for k ě k0pRq.

Then pMk, gk, xkq sub-converges in the pointed Gromov–Hausdorff sense to a complete metric space
pX8, d8, x8q.

It is natural to ask about regularity of the limiting metric space. Can we give conditions under
which the limit is smooth? Can there be collapsing? To answer these, we define a more stringent
notion of convergence

Definition 13.5. A sequence of pointed Riemannian manifolds pMk, gk, xkq converges in the C8-

sense, pMk, gk, xkq
C8
ÝÝÑ pM8, g8, x8q if there are εk Œ 0 and maps φk : BM8

ε´1
k

px8q ÑMk which are

diffeomorphisms onto their image and so that

(1) BMk
εk
pφkpB

M8
ε´1
k

px8qqq ĄMMk

ε´1
k

pxkq

(2) }φ˚kgk ´ g8}Crε
´1
k
s
ă εk

(3) distMk
pxk, φkpx8qq ă εk.

We note that this clearly implies pointed Gromov–Hausdorff convergence.

Definition 13.6. We say that pM 1, g1, x1q is ε-close to pM, g, xq if there is a map φ as in the previous
definition, which satisfies all of the listed conditions for εk replaced by ε.

Theorem 13.7. If pMk, gk, xkq is a sequence of complete Riemannian manifolds with

|∇m Rmgk |gk ď Cm,R

on BRpxkq, for k ě k0pm,Rq and

injpMk, gk, xq ě ιR ą 0

for x P BRpxkq and for k ě k1pRq, then after passing to a subsequence, pMk, gk, xkq converges in
C8 to pM8, g8, x8q a smooth, complete Riemannian manifold.
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Theorem 13.8. For pMn, gq a Riemannian manifold and x0 PM , r ą 0, if

(1) |Rm | ď Kr´2 on Brpx0q

(2) and volpBrpx0qq ą ωrn

then injpx0q ě ipK,ωqr ą 0.

Proof. The assumptions were chosen to be scale invariant, so assume r “ 1. Since the conjugate
radius is known to be bounded from below in terms of the data, i.e. it is ě c ” π?

K
by the Rauch

theorem, we only need to worry about short geodesic loops through x0. The map

π ” expx0
: BRn

c p0q – B
Tx0M
c Ñ Bcpx0q

is a local diffeomorphism and a covering map. The claim is that the radius can be shrunk sufficiently
(depending on K, ω) so that π becomes a diffeomorphism. Suppose that the shortest geodesic loop
γ through x0 has length ` “ |γ| ă c

100—if it were longer we would have been done.

Let k ď c
10` and y P BRn

c{10p0q. The straight segment from y to 0 P Rn projects to a path in M

that ends at x0. Follow that path. Then follow the loop γ around x0 k times. Then follow the
prior path backwards to end up where you started on M . This loop lifts to a path on the local
cover BRn

c p0q. Consider the function:

fk : BRn
c{10p0q Ñ BRn

c p0q

that maps each y above to the endpoint of the lift of the path described. Notice that πpfkpyqq “ πpyq
for all k, but because of the non-trivial topology the lifted endpoints fkpyq are all different, i.e.
#π´1pyq ě c

10` and therefore

volπ˚g|BRn
c p0q ě

10

c`
volBc{10px0q

By volume comparison the volume on the left is bounded from above in terms of the data, and
the volume on the right is bounded from below in terms of the data. Rearranging, we get a lower
bound for `. �

Corollary 13.9. If pMn, gq is a complete Riemannian manifold and x0, x1 PM with x1 P BRpx0q

and |Rm | ă K on B2Rpx0q then

injpM,x1q ě ipinjpx0q,K,Rq ą 0.

Proof. We have that volpB1px0qq ě Cpinjpx0q,Kq. Hence, if d “ dM px0, x1q, because we have that
volpB2d`1px1qq ě volpB1px0qq, then

volpB1px1qq ě Cpinjpx0q,K, dq ą 0.

This gives the desired lower bound for the injectivity radius at x1. �

Hence, we may restate our C8-compactness result as

Theorem 13.10. If pMk, gk, xkq is a sequence of complete Riemannian manifolds with

|∇m Rmgk |gk ď Cm,R

on BRpxkq and either
volpB1pxkqq ě ω ą 0 for all k ě k0pm,Rq

or equivalently
injpMk, gk, xkq ě ι ą 0 for all k ě k0pm,Rq

then after passing to a subsequence, pMk, gk, xkq converges in C8 to pM8, g8, x8q a smooth, com-
plete Riemannian manifold.

For Ricci flows, there is a very nice compactness property, thanks to the previous results along
with Shi’s estimates.
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Theorem 13.11. For pMk, pgk,tqtPrT1,k,T2,ks
, xkq Ricci flows with complete time slices, if

(1) T1,k Ñ T1,8 ă 0, T2,k Ñ T2,8 ě 0,
(2) for all R ą 0 and for all T1,8 ă T 11 ă T 12 ă T2,8 we have

|RmMk | ď KpR, T 11, T
1
2q

on Bt“0
R pxkq ˆ rT

1
1, T

1
2s, and

(3) volgk,t“0
pB

gk,t“0
r pxkqq ą w0 ą 0,

then pMk, gk,0, xkq
C8
ÝÝÑ pM8, g8,0, x8q and writing φk as the associated diffeomorphisms, we have

that

φkpgk,tqtPpT1,k,0s
C8
ÝÝÑ pg8,tqtPpT1,8,0s

which is a Ricci flow with complete time slices.

Example 13.12 (Losing topology). As with Gromov-Hausdorff convergence, plenty of things could
happen in the limit even for a C8-convergent sequence. For instance we could certainly lose topol-

ogy. If pMn, gq is smooth and x0 PM , then pMn, kg, x0q
C8
ÝÝÑ pRn, gRn , 0q as k Ñ8. The topology

of M is pushed away in this blow up.

Example 13.13 (Multiple subsequential limits). Suppose pMn
i , giq is a sequence of smooth Rie-

mannian manifolds, and M “M1#M2# . . . is their connected sum. Suppose we pick a sequence of
points xk among the Mi. Depending on how we pick those points, we can get different subsequential
limits.

Example 13.14 (Gaining topology). Suppose M2 « R2 is a semi-infinite cylinder capped on the
side, with corresponding metric g. It has trivial topology. If xk is a sequence of points that escapes

to infinity, then pM2, g, xkq
C8
ÝÝÑ S1 ˆ R, which has non-trivial topology.

Example 13.15 (Spheres converging to a hyperbolic manifold). Even more interesting things
can occur. Suppose M « S3 and K Ă S3 is a knot such that S3zK carries a hyperbolic metric
(most knots K allow this). If U is a tubular neighborhood of K, then UzK « T2 ˆ r0,8q with 8
corresponding to the spine of the tube. A natural metric on UzK is the hyperbolic cusp metric

gUzK “ e´2sgT2 ` ds2

We can extend this to a hyperbolic metric g on the manifold MzK with non-trivial topology. If we
cap off the infinite end of MzK by gluing a S1 ˆ D2 at a point xk sufficiently far out then we get
back to being « S3. Let gk be the metric carried by this S3, and let x0 be fixed. Then

pS3, gk, x0q
C8
ÝÝÑ a hyperbolic manifold

by our very construction of the gk, prior to capping off.

One positive result is that if the limit manifold is compact, then in fact all manifolds sufficiently
far out in the tail end of the sequence are diffeomorphic.

Theorem 13.16. If pMk, gk, xkq
C8
ÝÝÑ pM8, g8, x8q, M8 compact and connected, then Mk « M8

for k " 1.

Proof. By definition the maps φk : BM8
Rk
px8q Ñ Mk are diffeomorphisms onto their image, and

Rk Ñ 8. Since the limit manifold is compact, the radii Rk eventually cover the entire manifold,
and therefore the φk are global diffeomorphisms. �

We also have the following compactness theorem which is really just a corollary of our pointed
C8-topology compactness theorem.
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Theorem 13.17. Let pMn, pgtqtPr0,T qq be a Ricci flow and T ă 8 be the first singular time. Assume
that

(1) We have a sequence pxk, tkq PM ˆ r0, T q, tk Ò T , such that Qk “ |Rm |pxk, tkq Ñ 8.
(2) For all A ă 8 there exists CpAq ă 8, k0pAq ă 8 such that

|Rm | ď CpAqQk

on the parabolic neighborhood Bpxk, tk, AQ
´1{2
k q ˆ rtk ´AQ

´1
k , tkq for all k ě k0pAq.

(3) We have no volume collapse, i.e.

voltk Bpxk, tk, Q
´1{2
k q ě ωQ

´n{2
k

for all k ě k0pAq and a fixed ω ą 0.

Then pMn, pQkgQ´1
k pt´tkq

qt, xkq
C8
ÝÝÑ pM8, pgtqtPp´8,0s, x8q, an ancient Ricci flow.

Remark 13.18. When n “ 3, by the Hamilton-Ivey pinching technique we can show that sec ě 0
on M8 ˆ p´8, 0s

Remark 13.19. It is easy to construct sequences that satisfy the first two conditions above, but
the third condition is non-obvious. In fact Perelman’s significant contribution is his no local collapse
theorem which essentially says that the first two conditions guarantee the third under no further
assumptions.

14. Parabolic, Li-Yau, and Hamilton’s Harnack inequalities

In this section we discuss Harnack inequalities for heat equations with the goal of getting to
Hamilton’s Harnack inequality for Ricci flow, [Ham93]. In the first part of the section everything
we say will be true on Rn but a lot can be easily generalized to the case of manifolds with Ric ě 0.

If u P C8pRn ˆ r0,8qq, u ą 0 is a solution of the heat equation

Btu “ ∆u

with reasonable decay at infinity, then we have the well known convolution property

upx, t2q “

ż

Rn
Kt2´t1px´ yqupy, t1q dy

where Kt is the parabolic heat kernel,

Ktpxq “ p4πtq
´n{2 exp

´

´
|x|2

4t

¯

, t ą 0, x, y P Rn.

In fact this convolution property characterizes solutions of the heat equation. When working on
curved manifolds such exact convolution identities are harder to find, so we would like to:

(1) characterize u without resorting to the convolution property, and
(2) have some sort of rigidity case that is fulfilled precisely by the heat kernel.

We compute:

∇Kt “ ´
x

2
Kt and ∆Kt “ BtKt “ ´

n

2t
Kt `

|x|2

4t
Kt

Consider the ”Harnack quantity”

H fi t2
´

Btu´
|∇u|2

u

¯

`
n

2
tu
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Note H ” 0 for u “ Kt. We further compute:

BtpBtuq “ ∆pBtuq

Btp∇uq “ ∆p∇uq (for general M you’d also get a Ric term here.)

Bt|∇u|2 “ ∆|∇u|2 ´ 2 |∇2u|2

Bt

´

|∇u|2

u

¯

“
Bt|∇u|2

u
´
|∇u|2Btu

u2

“
∆|∇u|2

u
´
|∇u|2∆u

u2
´ 2

|∇2u|2

u

“ ∆
´

|∇u|2

u

¯

` 2
x∇|∇u|2,∇uy

u2
´ 2

|∇u|4

u3
´ 2

|∇2u|2

u

“ ∆
´

|∇u|2

u

¯

` 4
x∇2u,∇ub∇uy

u2
´ 2

|∇u|4

u3
´ 2

|∇2u|2

u

Therefore

BtH “ 2t
´

Btu´
|∇u|2

u

¯

`
n

2
u`

n

2
t∆u

` t2
´

∆pBtuq ´∆
´

|∇u|2

u

¯

´ 4
x∇2u,∇ub∇uy

u2
` 2

|∇u|4

u3
` 2

|∇2u|2

u

¯

ñ pBt ´∆qH “ 2 t2u
´1

t

Btu

u
´

1

t

|∇u|2

u2
`

n

4t2
´ 2

x∇2u,∇ub∇uy
u3

`
|∇u|4

u4
`
|∇2u|2

u2

¯

“ 2 t2u

ˇ

ˇ

ˇ

ˇ

∇2u

u
´

∇ub∇u
u2

`
g

2t

ˇ

ˇ

ˇ

ˇ

2

ě 0

We have thus shown:

Proposition 14.1. When u ą 0 is a solution of the heat equation, the Harnack quantity

H “ t2
´

Btu´
|∇u|2

u

¯

`
n

2
tu

satisfies pBt ´∆qH ě 0. If u “ Kt then we have the exact evolution BtH “ ∆H.

By the maximum principle one obtains:

Theorem 14.2 (Li-Yau, [LY86]). If u ą 0 is a solution of the heat equation (with reasonable decay
at infinity), then

Btu

u
´
|∇u|2

u2
`
n

2t
ě 0

Corollary 14.3. If 0 ă t1 ă t2, u ą 0 is a solution of the heat equation, and x1, x2 P Rn, then

upx2, t2q ě upx1, t1q

ˆ

t2
t1

˙´n{2

exp

ˆ

´
|x1 ´ x2|

2

4pt2 ´ t1q

˙

Proof. Join px1, t1q, px2, t2q by the straight spacetime segment

γptq “
t2 ´ t

t2 ´ t1
x1 `

t´ t1
t2 ´ t1

x2, t P rt1, t2s.

Then
d

dt
upγptq, tq “ Btu`

x∇u, x2 ´ x1y

t2 ´ t1
ě Btu´

|∇u||x2 ´ x1|

t2 ´ t1
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By the Li-Yau inequality,

d

dt
log upγptq, tq ě

Btu

u
´
|x2 ´ x1|

t2 ´ t1

|∇u|
u

ě
|∇u|2

u2
´
|x2 ´ x1|

t2 ´ t1

|∇u|
u

´
n

2t

ě ´
1

4

|x2 ´ x1|
2

t2 ´ t1
´
n

2t

and the result follows by integrating. �

Remark 14.4. Such a result also holds on manifolds with Ric ě 0.

Now we proceed to discuss Hamilton’s Harnack inequality for Ricci flow. In what follows pMn, gtq
is a Ricci flow on a closed manifold with non-negative curvature operator, R ě 0.

Remark 14.5. When n “ 3 this is equivalent to having sec ě 0.

Look at the space-time metric rg “ g `
´

R` ε
2t

¯

dt2 on M ˆ r0, T q and also define the following

algebraic curvature tensor on T pM ˆ r0, T qq by

SpX,Y, Z,W q “ xRpX,Y qZ,W y

SpX,Y, Z, T q “ P pX,Y, Zq fi p∇X RicqpY, Zq ´ p∇Y RicqpX,Zq

SpX,T, T, Y q “MpX,Y q fi p∆ RicqpX,Y q ´
1

2
p∇2RqpX,Y q ` 2

ÿ

i,j

Rpei, X, Y, ejq Ricpei, ejq

´ RicpRicpXq, Y q `
1

2t
RicpX,Y q

and all the obvious symmetries, for X, Y , Z, W P TpM . In that case we have

r∇BtS “ ∆S `
2

t
S ` rQpSq

where r∇ is a particular connection on space-time; more details can be found at [Bre09]. By an
application of the maximum principle we get a conservation law of the type ”S ě 0 is preserved”,
which is short for:

Mpw,wq ` 2P pu,wq `Rpu, uq ě 0

for all w P TpM , u P Λ2TM . Plugging in u “ v ^ w and tracing in w gives:

Theorem 14.6 (Hamilton’s Harnack inequality, [Ham93]). Let pMn, pgtqtPr0,T qq be a Ricci flow on
a closed manifold with R ě 0. Then

BtR` 2 x∇R, vy ` 2 Ricpv, vq `
1

2t
R ě 0

for any vector field v.

Corollary 14.7. Let pMn, pgtqtPr0,T qq be a Ricci flow on a closed manifold with R ě 0, and x1,
x2 PM , 0 ă t1 ă t2. Then

Rpx2, t2q ě
t1
t2

exp

˜

´
dist2

t1px1, x2q

2pt2 ´ t1q

¸

Rpx1, t1q
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15. Ricci solitons

Definition 15.1. We say pM, g,Xq is a Ricci soliton if pM, gq is a Riemannian manifold, X P

C8pM,TMq, and
2 Ric`LXg “ 2λ g

for some λ P R. The soliton is (i) ”shrinking” if λ ą 0, (ii) ”steady” if λ “ 0, or (iii) ”expanding”
if λ ă 0.

Definition 15.2. We say pM, g, fq or pM, g,∇fq is a gradient soliton if f P C8pMq and pM, g,∇fq
is a Ricci soliton. The corresponding equation is:

Ric`∇2f “ λ g

Proposition 15.3. If pM, g,Xq is a Ricci soliton, then ∆X ` RicpXq “ 0.

Proof. Take 2 Ric`LXg “ 2λ g. Tracing and dividing by two gives

R` divX “ nλ

If we take the divergence instead and use the contracted second Bianchi identity and the fact that
∇ip∇iXj `∇jXiq “ ∆Xj `∇j∇iXi ` Ricij Xj , we also get:

∇R`∇pdivXq `∆X ` RicpXq “ 0

Subtracting the gradient of the prior equation from the latter gives the required result. �

Remark 15.4. Note that every Killing field satisfies this equation. This is consistent with what
we would expect, seeing as to how we can always modify a solution X by a Killing field and not
affect the Lie derivative.

Proposition 15.5. If pM, g,Xq is a gradient soliton, then ∇R “ 2 Ricp∇fq.

Proof. Take Ric`∇2f “ λ g and trace it:

R`∆f “ nλ

If we take the divergence instead, we get

1

2
∇R`∇∆f ` Ricp∆fq “ 0

Combining the two gives the required result. �

Corollary 15.6. If pM, g, fq is a gradient soliton then

R` |∇f |2 ´ 2λf ” const

Similarly
´∆f ` |∇f |2 ´ 2λf ` nλ ” const

and
1

2
R`∆f ´

1

2
|∇f |2 ` λf ” ´const

2
` λn

Proof. We prove the first identity; the others follow similarly. Plug ∇f into the soliton equation
and use the proposition above:

2 Ricp∇fq ` 2∇2fp∇f, ¨q “ 2λ∇f ñ ∇R`∇|∇f |2 ´ 2λ∇f “ 0

The result follows. �

Example 15.7 (Euclidean soliton). Euclidean space with its canonical metric is a steady soli-
ton, but in fact we can even prescribe a potential f to it. For instance, pRn, gRn , 1

2 λ |x|
2q is a

shrinking/steady/expanding soliton depending on the sign of λ.
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Example 15.8 (Cigar soliton). A very important example of a steady two dimensional soliton is

the cigar soliton: pR2, g, fq with g “ dx2`dy2

1`x2`y2 and f “ ´ logp1` x2 ` y2q.

Figure 9. The cigar soliton resembles a cylinder at infinity.

Example 15.9 (Bryant soliton). Another important example of a steady higher dimensional soliton
is the Bryant soliton: pRn, dr2 ` aprq2 gSn´1 , fq for some aprq „

?
r at infinity.

Remark 15.10. Solitons give rise to Ricci flows. If pM, g,Xq is a soliton and φ denotes the flow
of X, Btφ “ X ˝ φ, then the family of metrics

gt “

$

’

’

&

’

’

%

´2λt φ˚1
2λ

logp´λtq
g when λ ă 0

´2λt φ˚1
2λ

logp´λtq
g when λ ą 0

φ˚t g when λ “ 0

form a Ricci flow. When λ ă 0 it is a long-time existent flow (t ą 0), when λ ą 0 it is an ancient
flow (t ă 0), and when λ “ 0 it is an eternal flow (t P R).

Corollary 15.11. Ricci solitons give rise to breathers.

The following theorem summarizes what we have already shown for breathers, and also introduces
a new two-dimensional result.

Theorem 15.12. The following are all Einstein:

(1) Closed expanding or steady solitons.
(2) Closed shrinking 3-dimensional solitons.
(3) Closed gradient 2-dimensional solitons.

Proof. We have already shown the first two statements, so it remains to prove the third. We
may assume M2 is orientable, else pass to its double cover. By the gradient soliton equation
Ric`∇2f “ λg and the fact that Ric “ 1

2Rg on surfaces, it follows that ∇2f is conformal to g and
therefore

∇2f “
1

2
∆f g

Since M2 is orientable, it admits a complex structure J . We define Y “ J∇f and claim that it
is Killing. Indeed, since J is a parallel endomorphism one finds

x∇ApJ∇fq, By “ xJ∇A∇f,By “ ´x∇A∇f, JBy “ ∇2fpA, JBq “ ´
1

2
∆f xA, JBy

By switching the roles of A and B we get

pLY gqpA,Bq “ x∇AY,By ` x∇BY,Ay “ ´
1

2
∆f xA, JBy ´

1

2
∆f xB, JAy “ 0

and thus Y is Killing.
Notice that by Gauß-Bonet and the soliton equation we get χpM2q ą 0, which says that M2 is

a topological sphere. Notice that we may assume Y ı 0, or else there’s nothing to prove. In that
case, the existence of Y forces pM2, gq to have an S1 symmetry. Since M2 is topologically a sphere,
f has two extremal points xmin, xmax. Let γ be a minimizing geodesic from xmin to xmax.
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‚xmin ‚ xmax‚ ∇f
J∇f

Figure 10. The surface M2, the level sets of f , and Y “ J∇f .

Notice that |∇f | is constant on the level sets of f : Y |∇f |2 “ 2∇2
Y,∇ff “ ∆f xY,∇fy “ 0. Set

F psq “ fpγpsqq, so that F 1psq “ |∇fpsq| “ |Y | 9 fibre length, and F 2psq “ ∇2
γ1,γ1f “

1
2 ∆f . Now

we use the soliton equation ´∆f ` |∇f |2 ´ 2f “ 0 to compute:

F 2 “
1

2
∆f “

1

2
pF 1q2 ´ F ñ F3 “ F 1F 2 ´ F 1

Then

F3F 2 “ F 1pF 2q2 ´ F 1F 2 ñ
1

2
ppF 2q2q1 “ F 1pF 2q2 ´

1

2
ppF 1q2q1

Integrating,

1

2
pF 2p`qq2 ´

1

2
pF 2p0qq2 “

ż `

0
F 1pF 2q2 ds´

1

2
pF 1p`qq2 `

1

2
pF 1p0qq2.

The first two terms cancel because they refer to the rate of change of the length of the fibres near
the tips (which are equal in absolute value) as do the last two terms (they are both zero). By
monotonicity F 1 ě 0, so F 2 ” 0, so F 1 ” const, so in view of having just two endpoints F 1 ” 0, so
F ” const, so f ” const. �

16. Gradient shrinkers

The goal of this section is to study gradient shrinkers and in fact prove that closed solitons
are gradient; we have only done this so far in the case of steady and expanding solitons, and
three-dimensional shrinkers.

We begin by studying the properties of gradient shrinkers, with the goal of finding a simple PDE
that is satisfies by the potential f . Recall the gradient soliton equation Ric`∇2f “ λg. If we set
φ to be the flow of ∇f , then we’ve seen that gt “ ´2λtφ˚1

2λ
logp´λtq

g is an ancient Ricci flow, t ă 0.

If we define a time dependent

fp¨, tq “ f ˝ φ 1
2λ

logp´λtq

then Ric`∇2fp¨, tq “ ´ 1
2tg “

1
2τ g, for τ “ ´t. Then in view of the soliton identity ∆f ` R “ n

2τ
we compute

Btf “ p∇fqf “ |∇f |2 “ ´∆f ` |∇f |2 ´R` n

2τ

For convenience we write u “ τ´n{2e´f , so that ∇u “ ´τ´n{2e´f∇f and ∆u “ τ´n{2e´f |∇f |2 ´
τ´n{2e´f∆f . Then the evolution for f , written in terms of τ , reduces to

Bτu “ ∆u´Ru

This is referred to as the conjugate heat equation in Ricci flow because pBt ´∆q˚ “ Bτ ´∆`R in
spacetime.

We can now prove that:

Theorem 16.1. All closed Ricci solitons are gradient solitons.

Proof. The only case we have not proven yet is that of shrinkers, so we will assume we are on a
shrinking soliton pM, g,Xq. By definition 2 Ric`LXg “ 2λg, λ ą 0. It would be convenient if we
could show that X “ ∇2f for some f , but that is not true in general because we can only capture
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the vector field X up to a Killing field. Instead we want to rewrite LXg “ 2∇2f for some smooth
f . We do that by finding f so that

S fi Ric`∇2f ´ λg

vanishes identically. By taking the divergence of both sides we get:

divS “
1

2
∇R`∇∆f ` Ricp∇fq

If instead we plug in ∇f into the equation for S we get

Sp∇fq “ Ricp∇fq ` 1

2
∇|∇f |2 ´ λ∇f

Subtracting,

∇
´1

2
R`∆f ´

1

2
|∇f |2 ` λf

¯

“ divS ´ Sp∇fq

It will be more convenient to rewrite this (by multiplying by e´f ) as:
”

∇
´1

2
R`∆f ´

1

2
|∇f |2 ` λf

¯ı

e´f “ divpSe´f q

Since we’re on a soliton, S “ ∇2f ´ 1
2LXg “

`

∇p∇f ´ Xq
˘sym

, and |S|2 “ x∇p∇f ´ Xq, Sy.
Integrating by parts, we find that

ż

|S|2e´f dV “

ż

x∇p∇f ´ xq, Sy e´f dV

“ ´

ż

x∇f ´X,divpSe´f qy dV

“ ´

ż

x∇f ´X,∇
´1

2
R`∆f ´

1

2
|∇f |2 ` λf

¯

y e´f dV

From this we see that S ” 0 is equivalent to solving

(16.1)
1

2
R`∆f ´

1

2
|∇f |2 ` λf ” c0 P R

Equivalently, setting h “ e´f{2 gives the PDE:

(16.2) ∆h´
1

4
Rh` λh log h “ ´

1

2
c0h

Consider the associated functionals

(16.3) Erf s “

ż

´1

2
|∇f |2 ` 1

2
R` λf

¯

e´f dV ô Erhs fi 2

ż

|∇h|2 ` 1

4
Rh2 ´ λh2 log h dV

Observe that (16.1) is the Euler-Lagrange equation for Erf s subject to
ş

e´f dV ” const, and that
(16.2) is the Euler-Lagrange equation for Erhs subject to

ş

h2 dV ” const. In particular, we have
reduced solving (16.1) to minimizing Erhs subject to an L2 norm constraint.

Note that by interpolation
ż

h2 log h dV ď ε

ż

h2`δ dV ` C

ż

h2 dV

and for δ “ δpnq ą 0 sufficiently small, Sobolev embedding translates this bound into
ż

h2 log h dV ď ε

ż

|∇h|2 dV ` C
ż

h2 dV

In view of our L2 norm constraint on h and the boundedness of R on closed manifolds, we conclude

Erhs ě ε

ż

|∇h|2 ´ C
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In particular the functional is bounded from below and, furthermore, any minimizing sequence is
automatically bounded in H1. Since h ÞÑ h2 log h is continuous with respect to the H1 norm, any
minimizing sequence subconverges to a minimizer.

To show the minimizer is smooth we employ a slightly different argument. Suppose now that we
evolve a function f by

B
rτf “ div

`

p∇f ´Xqe´f
˘

“ ∆f ´ |∇f |2 `R´ nλ` x∇f,Xy
for some time parameter rτ that is independent of any flow (there is no flow). Then

d

drτ
E “ ´

ż

|S|2e´f dV and
d

drτ

ż

e´f dV “ 0

i.e. E decreases for as long as S ‰ 0, and we stay within the same constraint class
ş

e´f dV ”

const. The evolution simplifies if we set u “ e´f , because it collapses to a linear parabolic equation

B
rτu “ ∆u` pR´ nλqu` x∇u,Xy

which therefore exists through rτ Ñ8, while at the same time B
rτE “ ´

ş

|S|2u dV and B
rτ

ş

u dV “ 0.
By the Harnack inequality and the fact that Erf s ě ´C we get L8 bounds on u, and therefore
that it converges smoothly to a minimizer u8 which is strictly positive, and so f8 “ ´ log u8 is
smooth. Backtracking, this means we can solve (16.1) and therefore our shrinking soliton was a
gradient soliton to begin with. �

17. F , W functionals

The F , W functionals come naturally out of studying gradient solitons the way we did in the
previous two sections. The F functional is (up to a multiplicative constant) simply the energy Erf s
on steady solitons (λ “ 0),

Frg, f s fi
ż

M
p|∇f |2 `Rq e´f dV .

and the W functional is (also up to a multiplicative and additive constant) a scale-invariant ad-
justment of Erf s on shrinking solitons (λ ą 0).

Wrg, f, τ s fi
ż

M

”

τp|∇f |2 `Rq ` f ´ n
ı

p4πτq´n{2 e´f dV

ˆ

“

ż

M

”

τp|∇f |2 `Rq ` 2τλf ´ n
ı

p4πτq´n{2 e´f dV

˙

,

since λ “ 1
2τ on a shrinking soliton. In view of our prior computations, it follows that:

Theorem 17.1. On a steady soliton Ricci flow with τ “ ´t, Bτf “ ∆f ´ |∇f |2`R, it is true that

d

dτ
F “ ´2

ż

M
|Ric`∇2f |2 e´f dV

Theorem 17.2. On a shrinking soliton Ricci flow with τ “ ´t, Bτf “ ∆f ´ |∇f |2 `R´ n
2τ , it is

true that
d

dτ
W “ ´2τ

ż

M
|Ric`∇2f ´

1

2τ
g|2 e´f dV

Remark 17.3. There also exists a functional W` for expanders, but we will not go down that
path here.

These monotonicity formulae hold for an arbitrary Ricci flow. Integrating by parts
ż

M
x∇2f, Sy e´f dV “

ż

M
divp∇f e´f q

”1

2
R`∆f ´

1

2
|∇f |2 ` 1

2τ
f
ı

“ ´δEp∆f ´ |∇f |2q
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and therefore

´2τ

ż

M
x∇2f, Sy p4πτq´n{2 e´f dV “ δW r∆f ´ |∇f |2s.

If Bτf “ R´ n
2τ ô Bτ

`

p4πτq´n{2 e´f dV
˘

“ 0, then on a shrinking soliton

(17.1)
d

dτ
W “ ´2τ

ż

M
xRic´

1

2τ
g,Ric`∇2f ´

1

2τ
gy e´f dV .

We claim that:

Lemma 17.4. The identity (17.1) is true on any Ricci flow on a closed manifold.

Proof. Observe that Bτdf “ dR, Bτ |∇f |2 “ 2x∇R,∇fy ´ 2 Ricp∇f,∇fq. In view of the evolution
of f ,

d

dτ
W “

ż

M

!

B

Bτ

”

τp|∇f |2 `Rq ` f ´ n
ı)

p4πτq´n{2 e´f dV

“

ż

M

”

|∇f |2 `R` 2τx∇R,∇fy ´ 2τ Ricp∇f,∇fq

´ τ∆R´ 2τ |Ric |2 `R´
n

2τ

ı

p4πτq´n{2 e´f dV .

We compute

divp∇Re´f q “ ´x∇f,∇Ry e´f `∆Re´f

divpRicp∇fq e´f q “ 1

2
x∇f,∇Ry e´f ` xRic,∇2fy e´f ´ Ricp∇f,∇fq e´f

divp∇f e´f q “ ∆f e´f ´ |∇f |2 e´f

Putting it altogether,

d

dτ
W “

ż

M

”

∆f ´ 2τxRic,∇2fy ´ 2τ |Ric |2 ` 2R´
n

2τ

ı

p4πτq´n{2 e´f dV

“ ´2τ

ż

M
xRic´

1

2τ
g,Ric`∇2f ´

1

2τ
gy p4πτq´n{2 e´f dV

which was the required result. �

As a direct corollary we get the Perelman’s monotonicity for the W functional:

Theorem 17.5 (Monotonicity for W). If pM, gtq is a Ricci flow on a closed manifold, τ “ t´ t0,
t ă t0, and Bτf “ ∆f ´ |∇f |2 `R´ n

2τ , then

d

dτ
W “ ´2τ

ż

M
|Ric`∇2f ´

1

2τ
|2 p4πτq´n{2 e´f dV

The corresponding thing is true for F :

Theorem 17.6 (Monotonicity for F). If pM, gtq is a Ricci flow on a closed manifold, τ “ t0 ´ t,
t ă t0, and Bτf “ ∆f ´ |∇f |2 `R, then

d

dτ
F “ ´2

ż

M
|Ric`∇2f |2 e´f dV

Definition 17.7. For a Riemannian manifold pM, gq we set

λpM, gq “ inftFrg, f s :

ż

M
e´f dV “ 1u

and, when τ ą 0,

µpM, g, τq “ inftWrg, f, τ s :

ż

M
p4πτq´n{2 e´f dV “ 1u
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The monotonicity formulae imply that:

Corollary 17.8. If pM, gtq is a Ricci flow on a closed manifold, then λpM, gtq, µpM, gt, t0´ tq are
non-decreasing in t.

The machinery of this section gives another proof of the main theorem of the previous section:

Theorem 17.9. Closed shrinking breathers are gradient shrinking solitons.

Proof. We’ve already seen how a shrinking breather gives rise to an ancient flow pgtqtPp´8,0q, gλt “
λφ˚gt, λ P p0, 1q. Then

µpM, gt,´tq ď µpM, gλt,´λtq “ µpM,λφ˚gt,´λtq “ µpM,λgt,´λtq “ µpM, gt,´tq

so equality holds at the first step, and by looking at the monotonicity formula we conclude that we
are on a shrinking gradient soliton. �

18. No local collapsing, I

Theorem 18.1. For M compact, px0, t0q PMˆr0, T q and 0 ă r ă 1, assume that |Ric |p¨, t0q ă r´2

on Bpx0, t0, rq. Then,
volt0pBpx0, t0, rqq ě κrn.

Here, κ “ κpM, g0, T q is a constant.

Proof. Set τ “ t0 ` r
2 ´ t and fix a cutoff function φ, which is 1 on r0, 1{2s and cuts off to 0 at 1.

Set, for some A to be determined,

fp¨, r2q “ ´ logpφpdistt0px0, ¨qq `A,

and

up¨, r2q “ p4πr2q´
n
2 φ

ˆ

distt0px0,¨q

r

˙

e´A.

We choose A so that
ż

up¨, r2qdµgt0 “ 1,

or equivalently

r´n
ż

p4πq´
n
2 φ

ˆ

distt0px0,¨q

r

˙

e´A “ 1.

Rearranging this yields

A “ log

˜

p4πq´
n
2 r´n

ż

Bpx0,t0,rq
φ

ˆ

distt0px0,¨q

r

˙

¸

ď log

ˆ

p4πq´
n
2

volt0pBpx0, t0, rq

rn

˙

.

Hence, we would like to bound A from below. Notice that

Wrg0, f, r
2s “

ż

Bpx0,t0,rq
pr2p|∇f |2 `Rq ` f ´ nqup¨, r2q

ď

ż

Bpx0,t0,rq
r2

ˆ

C

r2
`
n

r2
´ log φ

ˆ

distt0px0,¨q

r

˙

`A´ n

˙

up¨, r2q

ď C `A´

ż

Bpx0,t0,rq
φ

ˆ

distt0px0,¨q

r

˙

p4πr2q´
n
2 φ

ˆ

distt0px0,¨q

r

˙

e´A

ď C `A´

ş

Bpx0,t0,rq
φ
´

distt0px0,¨q

r

¯

log φ
´

distt0px0,¨q

r

¯

ş

Bpx0,t0,rq
φ
´

distt0px0,¨q

r

¯
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ď C `A` C
volt0pBpx0, t0, rq

volt0pBpx0, t0, r{2q

ď C `A.

In the last inequality, we used Bishop–Gromov. From this, the claim follows, because:

µpM, g0, t0 ` r
2q ď µpM, gr2 , r2q ď C `A. �

19. Log-Sobolev inequality on Rn

Note that on Rn, the W functional takes the form

Wrf, τ s “
ż

Rn
pτ |∇f |2 ` f ´ nqp4πτq´

n
2 e´f “

ż

Rn
pτp2∆f ´ |∇f |2q ` f ´ nq
loooooooooooooooomoooooooooooooooon

p˚q

p4πτq´
n
2 e´f

Note that (*) is constant when pRn, δ, fq is a shrinking soliton, i.e., when f “ 1
4τ |x|

2, it is easy to
see that W rf, τ s “ 0, because the integrand vanishes. On the other hand, for general f , if we write

u :“ p4πτq´
n
2 e´f and assume that

ş

u “ 1, then we have that

Wru, τ s “
ż
ˆ

τ
|∇u|2

u
´ logpp4πτq

n
2 uq ´ n

˙

u

“ τ

ż

|∇u|2

u
´
n

2
logp4πτq ´

ż

u log u´ n

The computations above imply that this is non-increasing in τ when Bτu “ ∆u. It is convenient to
set vpx, τq :“ τ

n
2 up
?
τx, τq. Notice that

Wrvp¨, τq, 1s “Wru, τ s.

Furthermore, by our knowledge of the Euclidean heat kernel, we have that for τ1 ą τ

upx, τ1q “

ż

1

p4πq
n
2 pτ1 ´ τq

n
2

e
´ 1

4
|x´y|2

τ1´τ upy, τqdy.

Hence,

vpx, τ1q “

ż

τ
n
2

1

p4πq
n
2 pτ1 ´ τq

n
2

e
´ 1

4
|
?
τx´y|2

τ1´τ upy, τqdy

“

ż

τ
n
2

1

p4πq
n
2 pτ1 ´ τq

n
2

e
´ 1

4
τ1
τ1´τ

|x´y|2
τ
´n

2
1 up

?
τ1y, τqdy.

It is easy to see that this tends to
1

p4πq
n
2

e´
1
4
|x|2 .

Hence, by monotonicity of W, we see that

Wru, τ s ě 0.

Thus, we have proven

Theorem 19.1. If u P C80 pRnq with
ş

u “ 1 and u ě 0, then

n

2
`
n

2
logp2πnq `

ż

u log u ď
n

2
log

ˆ
ż

|∇u|2

u

˙

Note that this holds also if we allow for sufficiently fast decay at infinity rather than compact
support.
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20. Local monotonicity and L-geometry

We fix pM, gtq a Ricci flow. Recall that we have considered τ “ t0 ´ t and functions f satisfying

Bτf “ ∆f ´ |∇f |2 `R´ n

2τ
.

In this case, we have

d

dτ
Wrgt0´τ , f, τ s “ ´2τ

ż

|Ric`∇2f ´
1

2τ
g|2p4πτq´

n
2 e´f

Set

r :“ pτp2∆f ´ |∇f |2 `Rq ` f ´ nqu,

where u “ p4πτq´
n
2 e´f . In particular, because in the proof of the monotonicity of W all we did is

integrate by parts, we must have

Bτ pvdµq “ divpXqdµ´ 2τ |Ric`∇2f ´
2

2τ
g|2udµ,

for some vector field X. In particular, we have

Bτv “ divpXq ´Rv ´ 2τ |Ric`∇2f ´
2

2τ
g|2u.

In fact

Lemma 20.1. We have that

Bτv ´∆v `Rv “ ´2τ |Ric`∇2f ´
1

2τ
g|2u ď 0.

This is a straightforward computation.

Corollary 20.2. The quantity

max
M
pτp2∆f ´ |∇f |2 `Rq ` f ´ nq

is non-increasing with τ .

Corollary 20.3. If u is the heat kernel for Bτ ´ ∆ ` R based at px0, τ “ 0q, then writing u “

p4πτq´
n
2 e´f , we have that

τp2∆f ´ |∇f |2 `Rq ` f ´ n ď 0.

This follows from the asymptotics of the heat kernel. Equivalently, we have that

Bτf `
1

2
|∇f |2 ´ 1

2
R`

1

2τ
f ď 0.

Now, assume that u is a heat kernel and let γ : rτ1, τ2s Ñ M be some smooth curve, which we
think of as a smooth curve in space-time. We compute

d

dτ
fpγpτq, τq “ Bτf `

@

∇f, γ1
D

ď Bτf `
1

2
|∇f |2 ` 1

2
|γ1|2 ď

1

2
p|γ1|2 `Rq ´

1

2τ
f.

where from now on it is understood that the norm |γ1| is evaluated at t “ t0 ´ τ . Hence

d

dτ
p2
?
τfpγpτq, τqq ď

?
τp|γ1|2t0´τ `Rpγpτq, t0 ´ τqq.

From this, we are motivated to define
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Definition 20.4. We define the L-length of γ by

Lpγq “
ż τ2

τ1

?
τp|γ1|2 `Rpγpτq, t0 ´ τqqdτ.

It is sometimes convenient to define

`pγq :“
1

2
?
τ
Lpγq.

Theorem 20.5. For u a heat kernel as above, then for γ a path in spacetime between px1, τ1q and
px2, τ2q, we have that

pp4πτ2q
n
2 upx2, τ2qq

?
τ2

pp4πτ1q
n
2 upx1, τ1qq

?
τ1
ě e´

Lpγq
2

Corollary 20.6. For γ : r0, τ s ÑM with γp0q “ x0, we have that

upx, τq ě p4πτq´
n
2 e´`pγq.

This follows from the asymptotics of the heat kernel.
As such, these results motivate our definition

Definition 20.7. For px, τq, we define

Lpx, τq :“ inf tLpγq : γp0q “ x0, γpτq “ xu ,

and

`px, τq “
1

2
?
τ
e´Lpx,τq

Definition 20.8. A curve attaining the infimum in the definition of L is called a minimizing
L-geodesic.

It is not hard to show that a minimizer always exists and check that the L-geodesic equation for
γ is

∇XX ´
1

2
∇R` 1

2τ
X ` 2 RicpXq “ 0,

for X “ γ1.

Lemma 20.9. We have that
pBτ ´∆`Rqp4πτq´

n
2 e´` ď 0,

i.e.,

Bτ `´∆`` |∇`|2 ´R` n

2τ
ě 0.

Proof. The first variation of Lpγq gives the geodesic equation and the second variation gives

∆` ď
1

2
|∇`|2 ´ 1

2
R`

2

nτ
´

1

2τ
`. �

We remark that this is somehow related to the following theorem

Theorem 20.10. Let pM, gq denote a fixed Riemannian manifold with Ric ě 0. Suppose that
Btu “ ∆u is the heat kernel based at x0. Then

u ě
1

p4πτq
n
2

e´
1
4t

distpx,x0q
2
.

In fact, this follows because the right hand side is a subsolution to the heat equation

pBt ´∆q

ˆ

1

p4πτq
n
2

e´
1
4t

distpx,x0q
2

˙

ď 0.
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The proof of this uses the Laplacian comparison principle (Ric ě 0 ñ ∆ dist ď n´1
dist ).

Now, we summarize where we have gotten with computing various equations satisfied by `.

Bτ ` ě ∆`´ |∇`|2 `R´ n

2τ

Bτ ``
1

2
|∇`|2 ´ 1

2
R`

1

2τ
` “ 0

τp∆`´ |∇`|2 `Rq ` f ´ n ď 0.

It is convenient to reparametrize τ to τ “ s2. The reason for this, is that now

Lpγq “
ż s

0

˜

1

2

ˇ

ˇ

ˇ

ˇ

dγ

ds

ˇ

ˇ

ˇ

ˇ

2

` 2s2R

¸

ds

Furthermore, X 1 :“ dγ
ds satisfies

∇X 1X
1 ´ 2s2 ∇R` 4s RicpX 1q “ 0.

Lemma 20.11. The limit V “ limτÓ0
?
τ X P Tx0M exists.

Proof. Changing variables, the limit equals limsÓ0
1
2 X

1 and this limit does exist. �

Definition 20.12. If γ : r0, τ s ÑM is an L-geodesic at px0, t0q and v “ limτÓ0
?
τ X, then we let

L expτx0,t0pvq fi γpτq

Remark 20.13. L expτx0,t0pv{2
?
τq Ñ expx0,t0pvq as τ Ó 0.

Example 20.14. Suppose that we are on Rn, x0 “ 0, t0 “ 0, τ “ ´t. Then

Lpγq “
ż τ

0

?
τ |γ1|2 dτ “

1

2

ż s

0

ˇ

ˇ

dγ

ds
ps2q

ˇ

ˇ

2
ds

and therefore

(1) Lpx, tq “ 1
2
|x|2
?
τ

,

(2) `px, tq “ |x|2

4τ as with the heat kernel,

(3) γps2q “ s?
τ
x,

(4) γpτq “
a

τ
τ x “

?
τ y.

Observe that `pγpτq, τq “ |y|2

4 .

Theorem 20.15. If L “ 2
?
τ L, then BτL`∆L ď 2n. Furthermore, if Jpv, τq “ detL expτx0,t0pvq

then
d

dτ

´

p4πτq´n{2 exp
´

´ `pLτx0,t0pvq, τq
¯

Jpv, τq
¯

ď 0

Remark 20.16. Our motivation for the second part of the theorem is that

pBτ ´∆`Rq
`

p4πτq´n{2e´`
˘

ď 0 ñ
d

dτ

ż

p4πτq´n{2e´` dµt0´τ ď 0

Proof. The first part of the theorem can be obtained by computation. For the second part, assume
for simplicity that ` is smooth and has no critical points near px, τq. Let Y1, . . . , Yn be L-Jacobi
fields along γ, that is,

Yipτq “
d

dσ
L expτx0,t0pvpσqq
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Choose the initial Y1, . . . , Yn so that the endpoints Y1pτq, . . . , Ynpτq are orthonormal. Note that
rYi, γ

1s “ 0, so that

d

dτ

”

|Yipτq|
2
ı

τ“τ
“ 2 RicpYipτq, Yipτqq ` 2

@

∇γ1Yi, Yi
D

“ 2 RicpYi, Yiq ` 2
@

∇Yiγ
1, Yi

D

“ 2 RicpYi, Yiq ` 2 x∇Yi∇`, Yiy
“ 2 RicpYi, Yiq ` 2∇2

Yi,Yi`.

Summing over i,

2
d

dτ
Jpv, τq “ 2R` 2∆` ď 2Bτ `` 2|∇`|2 ` n

2τ
so

d

dτ
Jpv, τq ď

d

dτ
`pL expτx0,t0pvq, τq `

n

2τ
and the result follows. �

Corollary 20.17. By this monotonicity (letting τ Ó 0) we conclude

τ´n{2 exp
´

´ `pL expτx0,t0pvq, τq
¯

Jpv, τq ď 2ne´|v|
2
.

This will show up in the proof of no local collapsing.

Definition 20.18. The quantity

rVx0,t0pτq “

ż

M
p4πτq´n{2e´` dµt0´τ

is called the reduced volume.

Remark 20.19. By the previous theorem the integrand of rV is pointwise decreasing, so d
dτ

rV ď 0.

21. No local collapsing, II

Using L-geometry we can prove no local collapsing using local tools, unlike before.

Definition 21.1. A Ricci flow pM, pgtqtPr0,T qq (not necessarily compact) is said to be κ-noncollapsed

at scales ă ρ if for all px0, t0q P M ˆ r0, T q, 0 ă r ă ρ, r ă
?
t0 such that |Rm | ď r´2 on the

parabolic neighborhood Bpx0, t0, rq ˆ rt0 ´ r
2, t0s, it follows that volt0 Bpx0, t0, rq ě κrn.

Theorem 21.2. If T ă 8, and pM, pgtqtPr0,T qq is a Ricci flow on a closed manifold M then the
flow is κ-noncollapsed on scales ď 1, where κ “ κpM, g0, T q.

Lemma 21.3. If px0, t0q PMˆr0, T q, 0 ă r ă 1, r ă
?
t0, |Rm | ď r´2 on Bpx0, t0, rqˆrt0´r

2, t0s,
then

volt0 Bpx0, t0, rq

rn
ě κ1

where κ1 “ κ1prVx0,t0pr
2qq.

Proof. Let α P p0, 1q be a constant that is to be determined. One can show that L expτx0,t0pvq P

Bpx0, t0, r{2q if τ ă α2r2 and |v| ă 1
10α . Moreover, in view of the curvature bounds we have

`p¨, α2r2q ě inf
! 1

2αr

ż α2r2

0

?
τ p|γ1|2 `Rq dτ

)

ě ´Cα

on Bpx0, t0, r{2q. By monotonicity of reduced volume,

rVx0,t0pr
2q ď rVx0,t0pα

2r2q ď

ż

Bpx0,t0,r{2q
p4πα2r2q´n{2 eCα dµt0´α2r2



44 NOTES BY OTIS CHODOSH AND CHRISTOS MANTOULIDIS

`

ż

MzBpx0,t0,r{2q
p4πα2r2q´n{2e´` dµt0´α2r2

ď p4πq´n{2α´neCα
volt0´α2r2 Bpx0, t0, r{2q

rn

`

ż

Dα2r2zBp0,1{10αq
p4πα2r2qe´`pL expα

2r2

x0,t0
pvqq Jpx, α2r2q dv

where Dτ “ tv P Tx0M : rτ ÞÑ L exprτ
x0,t0pvq is minimizing up to τu. Then

rVx0,t0pr
2q ď Cpαq

volt0 Bpx0, t0, rq

rn
`

ż

Tx0zBp0,1{10αq
2ne´|v|

2
dv

We may choose α ą 0 small enough to absorb the rightmost term into the left hand side, and the
result follows. �

Proof of 21.2. Let K “ sup |Rmp0q|, and t1 ą 0 be such that |Rm | ď 2K on M ˆ r0, t1s.

Claim 21.4. There exists x1 PM such that Lpx1, t1q ď n
?
t0 ´ t1.

Proof of claim. Recall that for L “ 2
?
τL we had BτL`∆L ď 2n, or equivalently BtL ě ∆L´ 2n.

Therefore if, for the sake of contradiction, minLp¨, t1q ą n
?
t0 ´ t1, then there would exist ε ą 0

such that minLp¨, t1q ą 2npt0´t1q`ε. By the evolution equation for L and the maximum principle,
minLp¨, t0q ą ε, and this of course contradicts that Lpx0, t0q “ 0. �

Claim 21.5. Lp¨, 0q ď n
?
t0 ´ t1 ` L0

?
t0 ď C

?
t0 on Bpx0, 0,

?
t1q.

Proof of claim. By our choice of t1 and of x1 we have

Lp¨, 0q ď Lpx1, t1q `

ż t0

t0´t1

?
τp|γ1|2 ` 2Kq dτ ď n

?
t0 ´ t1 ` L0

?
t0.

The second inequality of the claim is clear. �

By the monotonicity of reduced volume,

rVx0,t0pr
2q ě rVx0,t0pt0q ě p4πt0q

´n{2

ż

Bpx1,0,
?
t1q
e´` dµ0

ě C 1e´C
vol0Bpx1, 0,

?
t1q

t
n{2
1

ě C 1e´C ą 0

which combined with the previous lemma gives the required result. �

22. κ-solutions

It is worth summarizing where we’ve gotten so far. Suppose pM, pgtqtPr0,T qq is a Ricci flow with
singular time T ă 8. Choose εk Ó 0. Let pxk, tkq PM ˆ r0, T ´ εks be such that

|Rm | ď Qk fi |Rm |pxk, tkq on M ˆ r0, T ´ εks

Then Qk Ñ8, tk Ò T . We have established that

pM, pQkgQ´1
k tq, xk, tkq

C8 subseq.
ÝÝÝÝÝÝÝÑ pM8, pgtqtPp´8,0s, x8, 0q

The sequence of manifolds on the left satisfies

(1) |Rm | ď 1,
(2) |Rm |pxk, tkq “ 1,
(3) κ-noncollapsed at scale

?
Qk.

The limit manifold on the right satisfies:
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(1) |Rm | ď 1,
(2) |Rm |px8, 0q “ 1,
(3) κ-noncollapsed at all scales,
(4) in 3D: sec ě 0 (Hamilton-Ivey pinching), Rpx8, 0q ą 0, so R ą 0 everywhere.

Furthermore, Hamilton’s Harnack inequality on ancient solutions becomes

BtR` 2 x∇R, V y ` 2 RicpV, V q ě 0

Definition 22.1. An ancient Ricci flow is a κ-solution if:

(1) it has complete time slices,
(2) |Rm | ď K on p´8, 0s,
(3) the curvature operator is R ě 0 on p´8, 0s,
(4) R ą 0 on p´8, 0s,
(5) BtR` 2 x∇R, V y ` 2 RicpV, V q ě 0,
(6) M ˆ p´8, 0s is κ-noncollapsed at all scales.

The flow will be called a κ-˚-solution if it satisfies all of the above except perhaps for (2), and (4)
is replaced by R ą 0 at t “ 0.

Theorem 22.2. If pM, gtq is a κ-˚-solution and |Rm |p0q ď K, then the flow is also a κ-solution.

Example 22.3. Shrinking spheres and the Bryant soliton in three dimensions are all examples of
κ-solutions. The cigar is not an example, because it is not κ-noncollapsed at all scales for any
κ ą 0.

Theorem 22.4. If pMn, gtq, n ě 3, is a κ-˚-solution that contains a line, then M – N ˆR where
pNn´1, rgtq is another κ-˚-solution.

Proof. This is similar in spirit to the proofs in the maximum principle section. By Cheeger-Gromoll,
M splits isometrically into N ˆ R at time t “ 0 and the nullity of the Ricci tensor initially is
nontrivial. By the strong maximum principle this nontriviality persists, and by the same argument
as before, so does the splitting. �

22.1. Comparison geometry.

Definition 22.5. If x0, x1, x2 PM , rx1, rx2, rx3 P R2 are such that distpxi, xjq “ distprxi, rxjq for i, j,

then we call 4rx0rx1rx2 a comparison triangle for 4x0x1x2. Similarly, we call r=x0x1x2 a comparison
angle for =x0x1x2.

Theorem 22.6 (Toponogov’s theorem). Let pM, gq be complete, with sec ě 0. If γ1, γ2 : r0, 1s ÑM
are minimizing constant speed geodesics out of x0, then

(1) r=γ1ps1qx0γ2ps2q is decreasing in s1, s2,

(2) r=γ1ps1qx0γ2ps2q ď =γ1γ2,
(3) s´1 distpγ1psq, γ2psqq is decreasing in s, it converges to |γ11p0q´γ

1
2p0q| as s Ó 0, and therefore

distpγ1psq, γ2psqq

s
ď |γ11p0q ´ γ

1
2p0q|

In the equality case, 4γ1psqx0γ2psq spans a flat triangle.

Theorem 22.7. If pM, gq be complete, with sec ě 0, then pM,λg, x0q Ñ pS, d, x8q in the pointed
GH sense as λ Ó 0, where pS, d, x8q is a metric cone, i.e. S “ N ˆ r0,8q{N ˆ t0u with the tip
being x8 “ rN ˆ t0us.

Remark 22.8. pN, dq is called the link of the cone, the distance on the cone is given in terms of

the distance on N by dppx, sq, py, tqq fi
a

s2 ` t2 ´ 2st cos dpx, yq.
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Proof of Theorem. Let S1 “ tγ : r0,8q Ñ M minimizing geodesic rays of constant speed, γp0q “
x0u, and define x8 “ tγ ” x0u. Then

dpγ1, γ2q “ lim
sÒ8

distpγ1psq, γ2psqq

s
ď |γ11psq ´ γ

1
2psq|

defines a pseudometric on S1. Pick representatives S Ă S1 for S1{tγ1 „ γ2 ô dpγ1, γ2q “ 0u so that
pS, dq – pS1, dq is a metric space. Then pS, dq is in fact a metric cone, and BSpx8, Rq is relatively
compact for all R ą 0.

Claim 22.9. If γ1, γ2, . . . P S, rγ1, rγ2, . . . P S, are such that dpγk, x8q ď C ă 8, dpγk, rγkq Ñ 0,
and sk Ñ8, then

distpγkpskq, rγkpskqq

sk
Ñ 0

Proof of claim. If this were false, then after passing to a subsequence we can assume that the limit
is ě ε ą 0 and that γk Ñ γ8, rγk Ñ rγ8 (the latter two because the set of initial speeds is compact).
Then dpγ8, rγ8q ď dpγ8, γkq ` dpγk, rγkq ` dprγk, rγ8q Ñ 0, so γ8 “ rγ8. Finally,

distpγkpskq, γprγkpskqqq

sk
ď

distpγkpskq, γ8pskqq

sk
`

distpγ8pskq, rγkpskqq

sk
Ñ 0

and the claim follows. �

Now we prove the Gromov Hausdorff convergence. Let s, R ą 0. Set fs,R : BS
Rpx0q Ñ M ,

γ ÞÑ γpsq. Observe that

| distλgpfλ´1{2,Rpγ1q, fλ´1{2,Rpγ2qq ´ dpγ1, γ2q| “ |
?
λ distpγ1pλ

´1{2q, γ2pλ
´1{2qq ´ dpγ1, γ2q| Ñ 0

uniformly as λÑ 0. The final claim is that:

Claim 22.10. For every ε ą 0 and s " 1, BS
sεpfs,RpB

S
Rpx8qqq Ě BM

sRpx0q.

Proof of claim. If not, then there exists sk Ñ8, xk P B
M
skR
px0q, such that distpγpskq, xkq ą skε for

all γ P S. Let γk : r0, sks Ñ M be a minimizing geodesic from x0 to xk. Note that γk P B
S
Rpx8q.

Up to a subsequence, γk Ñ γ8, and

ε ď
distpγ8pskq, xkq

sk
ď |γ18p0q ´ γ

1
kp0q| Ñ 0

a contradiction. �

�

Definition 22.11. Let pM, gq be a complete manifold with sec ě 0. We define its asymptotic
curvature radio to be

RpM, gq “ lim supRpxq distpx, x0q
2

as distpx, x0q Ñ 8. This value is independent of x0, as the notation suggests.

Theorem 22.12. If pM, gq is a κ-˚-solution, then RpM, g0q “ 8.

Proof. We argue by contradiction–assume RpM, g0q ă 8. Look at the blowdown pM,λg, x0q Ñ

pS, d, x8q. In view of the curvature bounds R ď RpMq{dist2 and κ-noncollapsedness, the Gromov
Hausdorff limit Sztx8u is smooth. Away from the tip, therefore, we have the flow convergence

pM,λgλ´1t, x0q
C8
ÝÝÑ pM8, g

8
t , x8q.

Claim 22.13. pM8, g
8
t q is flat, i.e. pM8, g

8q – pRnzt0uq{Γ.
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Proof of claim. The vector field Br on the smooth cone satisfies RicpBr, Brq “ 0, so by the maximum
principle and the fact that R ě 0, the nullspace of the Ricci tensor is nontrivial and parallel, with
Br P nullpRicq. If rV, Brs “ 0, then ∇V Br “ ∇BrV “ 1

rV P nullpRicq as well, so nullpRicq “ TM , i.e.
Ric ” 0, i.e. Rm ” 0. �

By flatness, RpMq “ 0 and there exist αk Ñ 0 and rk Ñ8 such that

|Rm | ď e´1{2αk
r2
k

on pBpx0, 0, rkqzBpx0, 0, rk{2qq ˆ r´r
2
k, 0s.

Write Σ8 “ BBpx8, 0, 3{4q Ă S and note that Σ8 – Sn´1{Γ with principal curvatures 4{3, S –
Rn{Γ. The convergence gives us surfaces Σk Ă Bpx0, 0, rkqzBpx0, 0, rk{2q with principal curvatures
« 4

3 ¨
1
rk

for all times r´r2
k, 0s. Choose Ωk Ă M compact such that BΩk “ Σk. By a focal point

estimate, diamgt Ωk ď rk for t P r´r2
k, 0s. Note that Bpx0, 0, rk{2q Ă Ωk.

By Hamilton’s Harnack inequality, Rpy,´r2
kq ď Rpx, 0qer

2
k{p2r

2
kq ď e1{2Rpx, 0q ď αk

r2
k

, so |Rm | ď

αk
r2
k

on Bpx0,´r
2
k, rkq, so pM, r´2

k gr2
k
, x0q

C8
ÝÝÑ pRn, gRn , 0q, since the limit has to be smooth, flat,

and conical. Therefore Σk « Sn´1, so Γ is trivial, and pM, r´2
k g0, x0q

GH
ÝÝÑ pRn, gRn , 0q. By rigidity,

pM, g0q has to be flat, so R ” 0, a contradiction. �

We’re going to need the following point picking lemma.

Lemma 22.14 (Point picking lemma). Let pM, gq be complete, f : M Ñ p0,8q continuous, x P

M , and d ą 0. There is a y P Bpx, 2d fpxq´1{2q such that fpyq ě fpxq and f ď 4fpyq on

Bpy, d fpyq´1{2q.

Proof. Set y0 “ x. If y “ y0 works, we’re done. Else there exists y1 P Bpy0, d{
a

fpy0qq such that
fpy1q ą 4 fpy0q. If y1 works, we’re done. Else keep going. By compactness, this process has to
terminate. Note that the radii form a geometric series, so our points never go past the radius
specified in the statement. �

Lemma 22.15. Let pM, gtq be a non-compact κ-˚-solution. Then there exist sequences y0, y1,
. . . PM , d0, d1, . . .Ñ8 such that:

(1) Rpyk, 0q distpy0, ykq
2 Ñ8, and

(2) Rp¨, 0q ď 4Rpyk, 0q on Bpyk, 0, dk Rpyk, 0q
´1{2q.

For this sequence, and Qk fi Rpyk, 0q, the rescalings pM, pQkgQ´1
k tq, ykq

C8
ÝÝÑ pM8, g

8
t , x8q, a κ-

solution.

Proof. Since pM, gtq is a non-compact κ-˚-solution, RpMq “ 8. Therefore there exist xk P M ,

distpx0, xkq Ñ 8, such that Rpxk, 0q distpx0, xkq
2 Ñ8. Set dk “

1
10 distpx0, xkqRpxk, 0q

1{2 Ñ8.

Apply the point picking lemma to get yk P Bpxk, 0, 2dk Rpxk, 0q
´1{2q. Then dist0px0, ykq ě

1
2 distpx0, xkq, Rpyk, 0q ě Rpxk, 0q, so Rpyk, 0q distpyk, x0q

2 Ñ 8. Also, Rp¨, 0q ď 4Rpyk, 0q on

Bpyk, 0, dk Rpyk, 0q
´1{2q.

To check the convergence statement, one can check all properties of κ-solutions. Note that
curvature is bounded in view of the point picking argument. �

Lemma 22.16. Let pM, gq be complete, sec ě 0, yk P M , distpy0, ykq Ñ 8. Then there exists a
minimizing ray σ : r0,8q Ñ M , σp0q “ y0, and sk Ñ 8 such that distpy0, ykq “ distpyk, σpskqq.

Furthermore, r=y0ykσpskq Ñ π.

Proof. Choose a minimizing geodesic between y0, yk (parametrized by arc length). The initial speed
vectors subconverge to another vector, γ1kp0q Ñ v8 P Ty0M , and γk Ñ σ “ γv8 .
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By definition, =pγ1kp0q, σ
1p0qq Ñ 0, so r=yky0σp`kq Ñ 0, where `k is the point on σ that is the same

distance from y0 as yk is. Then distpyk,σp`kqq
`k

Ñ 0, so there exists sk ą 0 such that distpyk, σpskqq “ `k.

Then an isosceles triangle is formed, and r=yky0σpskq “ r=ykσpskqy0 ď =pγ1kp0q, σ
1p0qq Ñ 0, and

r=y0ykσpskq “ π ´ 2 r=yky0σpskq Ñ π. �

Remark 22.17. By what we’ve shown so far in combination with Cheeger-Gromoll, all non-
compact κ-˚-solutions split off a line at infinity. More specifically,

pMn
8, g

8
t q – pN

n´1 ˆ R, gtq
with Nn´1 a κ1-solution, for some κ1 ą 0.

Corollary 22.18. All two dimensional κ-˚-solutions are compact.

Proof. If we had a non-compact model, then it would split off a line at infinity and be of the form
N1 ˆR, for N1 a κ1-solution. This cannot be, because N1 is one dimensional so it has no intrinsic
curvature, so it cannot have positive scalar curvature. �

Corollary 22.19. If pM2, pgtqtPr0,T qq is a Ricci flow on a maximal time interval, then the singularity

model is S2 or RP2. If M2 ff S2, RP 2, then T “ 8.

Proof. If T ă 8, we can pick tk Ò T , Qk Ñ 8, xk P M , so that pM, pQkgQ´1
k pt´tkq

q, xkq
C8
ÝÝÑ

pM8, gt, x0q, a κ-solution. Since the latter is compact, R ą 0, M must be « S2 or RP2. �

Definition 22.20. Let pM, gq be complete, with Ric ě 0. The asymptotic volume ratio is defined
to be

VpMq “ lim
rÑ8

volBpx0, rq

rn
.

As the notation suggests, this is independent of x0.

Lemma 22.21. If pM, gq is complete, Ric ě 0, x PM , r ą 0, then volBpx, rq ě VpMq rn.

Proof. This is a simple application of Bishop-Gromov. �

Theorem 22.22. If pMn, gtq is a κ-˚-solution, then VpM, gtq “ 0.

Proof. The proof goes by induction on n. If n “ 2, then all κ-˚-solutions are compact, so of course
VpMq “ 0. In higher dimensions, compact models are again clearly fine. In the non-compact
case, we apply the previous point picking argument, and get pM,QkgQ´1

k t, ykq Ñ pN ˆ R, g8t , y8q.
Since volBpx, rq ě VpMq rn is scale invariant, this passes to the limit. However, by the inductive
hypothesis VpNn´1q “ 0 so VpNn´1 ˆ Rq “ 0 as well, so VpMq “ 0 as well. �

Theorem 22.23 (Volume controls curvature). Assume pM, gtq is a κ-˚-solution, px, tq P M ˆ

p´8, 0s, r ą 0. Then

voltBpx, t, rq ě αrn ñ Rpx, tq ď
Cpα, κ, nq

r2

Proof. The proof goes by contradiction. If this were false, then there would exist a sequence of
counterexample κ-˚-solutions pMk, g

k
t q, xk PMk, rk ą 0 such that vol0Bpxk, 0, rkq ě αrnk , but such

that r2
k Rpxk, 0q Ñ 8. By the point picking argument, and writing dk “

1
2rk Rpxk, 0q

1{2, there

exist yk P Bpxk, 0, rkq such that Qk “ Rpyk, 0q ě Rpxk, 0q, Rp¨, 0q ď 4Qk on Bpyk, 0, dkQ
´1{2
k q. By

Bishop-Gromov, vol0Bpyk, 0, dkQ
´1{2
k q ě 2´nαdnkQ

´n{2
k .

At this point yk, r
1
k “ dkQ

´1{2
k have the same properties as xk, rk with α replaced by 2´nα.

Blowing up, pMk, QkgQ´1
k t, ykq Ñ pM8, g

8
t , y8q, a κ-solution with Rpy8, 0q “ 1 and VpM8q ě

2´nα. This last statement contradicts the fact that asymptotic volume ratios of κ-˚-solutions
vanish. �
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Theorem 22.24 (Curvature controls volume from below). Let pM, gtq be a κ-˚-solution, px, tq P
M ˆ p´8, 0s, r ą 0. Then

Rpx, tq ď r´2 ñ voltBpx, t, rq ě βpk, nq rn

Proof. If this were false, then there would exist a sequence of counterexample κ-˚-solutions pMk, g
k
t q,

xk PMk, rk ą 0 such that Rpxk, 0q ď r´2
k but r´nk vol0Bpx0, 0, rkq Ñ 0. By Bishop-Gromov,

lim
sÓ0

vol0Bpxk, 0, sq

sn
“ ωn

so there exists sk P p0, rkq such that s´nk vol0Bpxk, 0, skq “
1
2 ωn. In the rescaling limit

pMk, s
´2
k gs2kt

, xkq
C8
ÝÝÑ pM8, g8, x8q

we have vol0Bpx8, 0, 1q “
1
2 ωn.

We claim that rk
sk
Ñ 8. If this were false, then up to passing to a subsequence we would have

convergence to a finite ρ. By rescaling,

vol0Bpxk, 0, rkq

rnk
Ñ 0 ñ

vol0Bpx8, 0, ρq

ρn
“ 0 ‰

1

2
ωn

a contradiction. Therefore rk
sk
Ñ8 as claimed.

In that case, in the rescaled limit Rpx8, 0q ď lim sup
s2k
r2
k
“ 0, so by the strong maximum principle

M8 is a quotient of Rn by some Γ. Note that Γ has to be trivial, or else we would have VpM8q “ 0
and that would violate κ-noncollapsing. Therefore M8 – Rn, in which case it’s impossible that
vol0Bpx8, 0, 1q “

1
2 ωn. �

Corollary 22.25 (Bounded curvature at bounded distance). If pM, gtq is a κ-˚-solution, x P

M , and Q “ Rpx, 0q, then Rp¨, 0q ď CpA, κ, nqQ on Bpx, 0, AQ´1{2q. Moreover, Rp¨, 0q ě
CpA, κ, nq´1Q on the same ball. In other words, if x, y PM , and

Rpx, 0qd0px, yq
2 ď A,

then
Rpy, 0qd0px, yq

2 ď BpA, κ, nq.

Proof. We will prove the second version of the statement. By the explicit bound on Rpx, 0q and
the “curvature controls volume from below” theorem, we have that

vol0pBpx, 0, rqq

rn
ě βpA, κ, nq,

where r “ Rpx, 0q´
1
2 . Moreover, we have that

vol0pBpy, 0, r ` d0px, yqqq ě vol0pBpx, 0, rqq.

Thus, we obtain

vol0pBpy, 0, r ` d0px, yqqq

pr ` d0px, yqqn
ě

rn

pr ` d0px, yqqn
βpA, κ, nq

“
r1

p1` d0px, yqRpx, 0q
1
2 qn

βpA, κ, nq

ě
1

p1`Aqn
βpA, κ, nq.

Now “volume controls curvature” implies that

Rpy, 0q ď
KpA, κ, nq

pr ` d0px, yqq2
ď KpA, κ, nqr´2 “ KpA, κ, nqRpx, 0q. �
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22.2. Compactness.

Corollary 22.26. The set

Mn,κ :“ tpM, pgtqt, xq : κ-˚-soliton, Rpx, 0q “ 1u

is compact with respect to smooth convergence.

Corollary 22.27. There is ηn,κ ą 0 so that if pM, pgtqq is a κ-˚-soliton, then

|∇R´
1
2 |, |BtR

´1|, |∇|Rm |´
1
2 |, |Bt|Rm ||´1 ď η

This follows from a simple blow-up argument, using the fact that the quantities are scale invariant
and the compactness of κ-˚-solitons obtained above.

22.3. 2-d κ-solitons. We would like to show that all 2-d κ-solitons are round. One approach is to
show that for M « S2, the entropy

NpM, gq :“ ´

ż

R log

ˆ

R volM

8π

˙

is scaling invariant. One may show that as R ą 0, NpM, gq ď 0 with equality if and only if M is
round. Moreover, under a Ricci flow with R ą 0, we have that BtNpM, gtq ě 0 with equality if and
only if pM, gtq is round. Now, set

N :“ inftNpM, g0q : pM, pgtqt, xq PM2,κu.

By compactness N “ NpM, g0q is attained for some pM, gtq. For t ď 0, we hence have that

N ď NpM, gtq ď NpM, g0q “ N.

This implies that pM, gtq is round. Moreover, for pM, pgtqtq PM2,κ, we have that

NpM, gtq ě N,

so pM, pgtqtq is round.
We discuss an alternative approach. Recall that

WrM, g, f, τ s “

ż

pτp|∇f |2 `Rq ` f ´ nqp4πτq´
n
2 e´fdµg,

and

µpM, g, τq “ inf

"

WrM, g, f, τ s :

ż

p4πτq´
n
2 e´fdµg “ 1

*

.

We now define

νpM, gq :“ inftµpM, g, τq : τ ą 0u.

Lemma 22.28. If R ą 0 then

lim
τÑ8

µpM, g, τq “ 8.

Hence, ν ą ´8 and

νpM, gq “ inftµpM, g, τq : T ě τ ě 0u,

for some T .

Proof. Substituting f ´ n
2 log τ for f , we have

WrM, g, f, τ s “

ż

pτp|∇f |2 `Rq ` f ´ n

2
log τ ´ nqp4πq´

n
2 e´fdµ ą τc´

n

2
log τ ´ C,

for τ large. �

Monotonicity of µ implies
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Lemma 22.29. We have that

BtνpM, gtq ě 0.

Lemma 22.30. Let pMn, pgtqtPr0,T sq be a Ricci flow with T ă 8. Assume that there is a singularity
at time T with is modeled on a compact κ-solution pMn

8, g
8
t q. Then, pMn

8, g
8
t q is a shrinking soliton.

Here, when we say that the singularity is modeled on pMn
8, g

8
t q, we mean that there is tk Õ T

and λk Ñ8, then

pM,λkgλ´1
k t`tk

q Ñ pMn
8, g

8
t q

in the smooth sense.

Proof. Because ν is monotone, we obtain that it is constant on pMn
8, g

8
t q. In particular, for t1 ă

t2 ď 0, we have that

pM,λkgλ´1
k t1`tk

q Ñ pMn
8, g

8
t1 q

and

pM,λkgλ´1
k t2`tk

q Ñ pMn
8, g

8
t2 q.

Thus

νpM,λkgλ´1
k t1`tk

q Ñ νpMn
8, g

8
t1 q

and

νpM,λkgλ´1
k t2`tk

q Ñ νpMn
8, g

8
t2 q.

If νpMn
8, g

8
t1 q ă νpMn

8, g
8
t2 q, then for k1, k2 " 1, then

λ´1
k1
t1 ` tk1 ă λ´1

k2
t2 ` tk2 .

Both sides tend to T , and it is not hard to see that this is a contradiction. �

Corollary 22.31. If pM2, pgtqtPr0,T sq with T ă 8 is a singular time, then the singularity is round.

Hence, for M « S2, we have that νpM, gq ď νpS2, groundq.

Theorem 22.32. All 2-d κ-solution are round.

Proof. Let pM, pgtqtq be a κ-solution and x PM . Compactness guarantees that

pM,Rpx, t̃qgRpx,t̃q´1t`t̃
t̃Ñ´8
ÝÝÝÝÝÑ pM8, g

8
t q.

The same proof as before implies that νpM8, g
8
t q is constant and hence pM8, g

8
t q is round. In

particular, we have that νpM, gtq is constant. �

22.4. Qualitative description of 3-d κ-solutions.

Theorem 22.33. For pM3, pgtqtq a κ-˚-solution with two ends, then pM, gtq » pS
2 ˆ R, gtq, the

round shrinking cylinder.

Proof. There is a line in pM, g0q. Because sec ě 0 in pM, g0q it is isometric to the product metric
on N ˆ R. Hence, the strong maximum principle guarantees that

pM3, gtq » pN
2 ˆ R, gtq.

It is easy to check that N2 is a 2-d κ-solution and is hence the round sphere. �

Theorem 22.34. For pM3, gq an orientable complete Riemannian manifold with sec ě 0 and R ą
0, then if M is compact it is diffeomorphic to one of S3{Γ, S2ˆ S1 or pS2ˆ S1q{Z2 » RP 3#RP 3.
If M is non-compact, then it is diffeomorphic to S2ˆR, pS2ˆRq{Z2, R3, T 2ˆR, pT 2ˆRq{Z2 or
S1 ˆ R2.
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Proof. It suffices to consider the non-compact case. There exists S ĂM a compact, totally geodesic,
totally convex submanifold, the “soul” of M , so that M « νM pSq, where νM is the normal bundle
of S in M . In particular, secS ě 0. The topology of M may be read off from the possibilities for
the soul S

S M
t˚u R3

S1 S1 ˆ R2

S2 S2 ˆ R
RP 2 pS2 ˆ Rq{Z2

T 2 T 2 ˆ R, pT 2 ˆ Rq{Z2.

This finishes the proof. �

Theorem 22.35. If pM3, pgtqtq is an orientable κ-˚-soliton, then the possibilities S2 ˆ S1 and
pS2 ˆ S1q{Z2 in the previous theorem do not occur.

Proof. Let pM̃, pg̃tqtq denote the universal cover. It is a κ-˚-soliton. Let π : M̃ Ñ M denote the

covering map. By assumption, M̃ « S2 ˆ R. Then, the strong maximum principle implies that
pM̃, g̃tq is isometric to a shrinking cylinder. In particular, pM, pgtqtq is isometric to pS2 ˆ Rq{Γ.
This is not κ-noncollapsed. �

Definition 22.36. For pM3, gq a Riemannian manifold, U Ă M and ε ą 0, U is called an ε-neck
if there is λ ą 0 and diffeomorphism Φ : S2 ˆ p´1

ε ,
1
ε q Ñ U , so that

›

›

›
λφ˚g ´ gS2ˆp´ 1

ε
, 1
ε
q

›

›

›

Ct 1
ε u
pS2ˆp´ 1

ε
, 1
ε
qq
ă ε.

A point x P U is called a center of U if x P ΦpS2 ˆ t0uq for such a Φ.
Another way to define this is as follows: if εk Ñ 0, then pMk, gk, xkq is a sequence of εk-necks

with xk the center of the neck if and only if pMk, λkgk, xkq
C8
ÝÝÑ pS2ˆR, gS2ˆR, x8q for some λk ą 0.

Definition 22.37. For pM3, pgtqtq a κ-˚-soliton and ε ą 0, we define

Mε :“ tx PM : x a center of an ε-neck at t “ 0u.

Theorem 22.38. For pM3, pgtqtq a κ-˚-soliton. Then MzMε is a bounded set.

Proof. Assume not. Then, there is xk P MzMε with xk Ñ 8. Then, there is a minimizing ray

σ : r0,8q ÑM and sk Ñ8 so that dist0px0, xkq “ distpxk, σpskqq, r=x0xkσpskq Ñ π, and

dist0px0, xkqRpx0, 0q Ñ 8.

Bounded curvature at bounded distance implies that

dist0px0, xkq
2Rpxk, 0q Ñ 8.

This implies that pM,Rpxk, 0qpgR´1pxk,0qtqt, xkq
C8
ÝÝÑ pM8, pg

8
t qt, x8q, which contains a line, and is

hence isometric to S2 ˆ R. �

Corollary 22.39. For pM3, pgtqtq a non-compact orientable κ-˚-soliton, then if M is not isometric
to S2 ˆ R or pS2 ˆ Rq{Z2, then M « R3 and M “ A 9YB where A is compact and diffeomorphic to
a ball, and B ĂMε is diffeomorphic to S2 ˆ R.
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