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2 NOTES BY OTIS CHODOSH AND CHRISTOS MANTOULIDIS

We would like to thank Richard Bamler for an excellent class. Please be aware that the notes are
a work in progress; it is likely that we have introduced numerous typos in our compilation process,
and would appreciate it if these are brought to our attention.

1. INTRODUCTION TO RICCI FLOW

The history of Ricci flow can be divided into the ”pre-Perelman” and the ”post-Perelman”
eras. The pre-Perelman era starts with Hamilton who first wrote down the Ricci flow equation
[Ham82] and is characterized by the use of maximum principles, curvature pinching, and Harnack
estimates. These tools also led to the proof of the Differentiable Sphere Theorem by Brendle
and Schoen [BS09]. The post-Perelman era is characterized by the use of functionals (the W
and F functionals), £ geometry, blow up analysis, singularity models, and comparison geometry.
Combined with Ricci flow with surgery, these tools helped complete the proof of the Poincaré
conjecture and the geometrization conjecture; [Per02], [Per03b], [Per03al.

A Ricci flow is a family (g;)ie; of Riemannian metrics on a smooth manifold, parametrized by a
time interval I < R and evolvingﬂ by

atgt = -2 Rngt

Remark 1.1. In harmonic local coordinates around a point p, the Ricci tensor at p is
. 1
Ricij(p) = —5A(9i) ()
and so Ricci flow resembles a heat flow evolution.

Example 1.2. If (M, g) is Einstein, i.e. Ricy = Ag, then g = (1 — 2At)g is a Ricci flow with
go = ¢, because

Otgt = —2Ag = —2Ricy = —2Ricy,
Note that in this example Rmg, = ﬁ Rmg and Ricg, = Ricy. When A > 0 Ricci flow can only
be defined up to time Tax = %, after which it becomes extinct.

SHE

FIGURE 1. Shrinking round sphere, S.

If A =0, Ricci flow is static and can be defined for all times.

&= &S S

FIGURE 2. Static flat torus, T2.
If A <0, Ricci flow is expanding and can be defined for all positive times.

Example 1.3. If (¢}), (¢?) are Ricci flows on My, My respectively, then gt + g? is a Ricci flow on
M1 X MQ.

Remark 1.4 (Parabolic rescaling). If (g) is a Ricci flow, then so are (A™1gy;) and (gi14,)-

1Oulr convention here is that Ric;; = gsz Rm;s:j, and Rm;jj; is a sectional curvature.
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FIGURE 3. Expanding hyperbolic surface, T24T?2.
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FIGURE 4. Evolving product manifold S? x R, ¢g; = (1 — 2t)gs2 + gr.

Remark 1.5 (Invariance under diffeomorphisms). Note that the Ricci flow equation is invariant
under diffeomorphisms, i.e. if & : M — M is a diffeomorphism and (g;) is a Ricci flow, then so is
(®*g¢). That is,

6t<1>*gt = -2 RIC[(I)*gt]
The infinitesimal version of this, assuming & is generated by a vector field X, is

@E)(gt = —2(D Ricgt)[ﬁth]-

From this equation we see that the Ricci flow cannot be strongly parabolic. Here is a heuristic
reason: Assume that (g¢) is a smooth solution to Ricci flow and consider a vector field X which
is highly oscillating. Then Lxg; is very likely also highly oscillating. But we expect parabolic
equations to have a smoothing effect, which is not the case here.

There is another heuristic reason to explain that Ricci flow is not strongly parabolic. If g were
a Ricci flat metric then there would be no evolution, and hence £xg; would be in the kernel of the
linearized Ricci operator so the kernel would be infinite dimensional. If the equation were strongly
parabolic, then the right hand side would be elliptic and should have a finite dimensional kernel.

In summary the diffeomorphism invariance of Ricci flow breaks strong parabolicity, so to prove
short time existence we had better couple our evolution equation with a separate evolving diffeo-
morphism.

2. SHORT TIME EXISTENCE

If we write out the Ricci flow equation in local coordinates, we get

(2.1) Ot9ij = DNggij + g“&%gst — "2 g1 — gStﬁzjgtz‘ + lower order terms

which is not strongly parabolic. This is related to the problem pointed out above: if (g;) is a
Ricci flow and g = ®*g; where ® is rough and close to the identity, then g will stay rough.

The idea is to show existence of a related flow §; = (®;)"'*g; and then switch back to g;. The
following is known as de Turck’s trick, after [DeT83].

Fix an arbitrary background metric § on M and consider diffeomorphisms ®; : M — M and a
family of Riemannian metrics (gt)e[o,r) that evolve according to system

8t<I>t = Aq>;k~ —(I)t

gt,9

2.2 ~ . ~
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Lemma 2.1. If we write g: = ®fq;, then the system is equivalent to
0Py = Ag, g1
0tgt =-2 Ricgt
Proof. We just observe that:
Orgt = at(q)z‘gt)
= BF Lo, 0010 + P70
= —2®f Ricy, = —2Ricy, .
0

So we have reduced the proof of short time existence for Ricci flow to proving short time existence
for another system. We analyze that system and show that the evolution is strongly parabolic.

Keep in mind that the setup is:

oM — M

with the target manifold endowed with the metrics g, g¢, and the domain endowed with the pullback
metrics @} g;.

Let %, V be the Levi Civita connections with respect to §;, g, and let p € M be some fixed point
at which we seek to compute the Laplacian

A(I) CI)t (p) € T<I>t(p)M

fghg
Let (e;) be an orthonormal frame at the point ®,(p) with respect to §;, with Ve;(®,(p)) = 0.
Then

02up) = Aapy g ®1(p) = Y, Verer(@u(p) = X (Veser = Veer) (21(p))

7

The point is that the expression above is now tensorial, because V — V is a two tensor. We'll use
the Koszul formula to rewrite this in terms of the tension field associated with the harmonic heat
flow. Suppose that X, Y, Z are arbitrary vector fields such that VX = VY = VZ = 0 at ®.(p).
Then:

25:(VxY —VxV,Z) = 25,(VxY, Z) = —X5(Y, Z) - Y§5(X, Z) + Z5(X,Y)
= —(Vx3)(Y, Z) = (Vy3)(X, Z) + (VzG:)(X,Y)

Plug in the e; for X, Y, Z (which is compatible with the assumption VX = VY = VZ = 0 due to
tensoriality) in the Koszul formula above:

0r®i(p) = Agxy, 3Pt(p)
- o (et + 5 Ten )

= —Xg(g)
So from ({2.2]) we obtain the Ricci de Turck equation
0tge = =2 Ricg, +Lx, @)t

We can now use that
(ﬁYgt)(A7 B) = Ygt(A7 B) - .at([Y7 A]7 B) - §t<A7 [Y7 B])

= (Vy@)(A, B) + :(VAY, B) + §:(A, VBY)
so in local coordinates £Xg(§t)§t is

§ft88i§tj + §Stasj§ti - 81-2]-?]1-]- + lower order terms
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By examining (2.1)) we conclude that in local coordinates Ricci de Turck is
otgt = Ay, g + lower order terms
and is indeed strongly parabolic.

Lemma 2.2 (Short time existence). Assume (M,g) is a closed Riemannian manifold. There is
7> 0 and a Ricci flow (gt)ie[o,r) such that go = g. This flow is unique.

Proof. For existence, first solve the Ricci de Turck equation with initial data gy to obtain §;, then
integrate the evolution of ®; in ([2.2)) with initial data ®¢ = id to obtain ®;. By the previous lemma,
gt = ®fg; is a Ricci flow starting at go.

For uniqueness, given g; solve the harmonic map heat flow

0P = Ay, 5Pt

The ®; are diffeomorphisms for a short amount of time. Then g = (@, 1)*gt solves ([2.2)), whose
solution is however unique by the parabolicity of Ricci de Turck. Throughout we can use g = go
as the background metric. O

Remark 2.3. Several choices of a vector field X work, as long as the symbol at § = g is the same.
Remark 2.4. The variation of the Ricci de Turck equation at § = g is
Otht = Aphy
where A denotes the Lichnerowicz Laplacian:
(ALh)(X,Y) = (AR)(X,Y) — h(X,Ric(Y)) — h(Ric(X),Y) + 2 R(X,-,,Y),h)

3. DISTANCE DISTORION ESTIMATES

Since the metric evolves by the Ricci tensor, having control over the latter is likely to control
the evolution of distances between pairs of points. The following theorem makes this statement
precise:

Theorem 3.1. Let (gt)sefr, 1o] be a Ricci flow and assume that p1gr < Ricy < page on M x [t1,t2].
Then

d
p disty(z,y) < —p1 disty(x, y)

in the (backward and forward, respectively) barrier sense on (t1,ta), and in the classical sense almost
everywhere. Furthermore

—pa dists(x,y) <

efpg(tzftl) dlSttQ ('1: y) 7p1(t27t1)
disty, (z, y)

Proof. Fix two distinct points x, y € M, a time ¢y € (¢1,t2), and a minimizing geodesic v : [0, d] —
M joining = to y parametrized by arc length at time ¢g, i.e. |7/(s)]s, = 1 for all s € [0,d]. Now we
vary the metric g; with respect to which we compute the length of v, but we hold v fixed. If we

write
d
=Lw&mw
for € [t1,t2] then

e alae] = [ A [GOAO],, a0 - [ R o)A 6)as
< p2

Now by estimating p1g:, < Ricy, 201, We get

d .
—padisty, (2,y) < = [5 (V)L:to < —p1disty (2, )
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The barrier inequality follows by noting that dist;(x,y) < ¢:(7), and the a.e. classical inequality
follows by noting that ¢ — dist¢(x, y) is Lipschitz. To get the second inequality we simply integrate.
O

Remark 3.2. This theorem gives us control over distance distortion but it is somewhat crude.
In fact we can do significantly better on long geodesics. By borrowing intuition from the Bonnet-
Myers theorem in Riemannian geometry, we expect that the Ricci curvature integral in cannot
possibly be too large on a minimizing geodesic.

Theorem 3.3. Let (gt)e[t, 1,) be a Ricci flow and assume that Ric; < (n—1)Kgr on M™ x [t1,t2],
for K > 0. Then

d
dtff distt (ZE, y) = _CK1/2

in the backward barrier sense on (t1,t2), and in the classical sense almost everywhere. Furthermore
disty, (z,y) = disty, (z,y) — CKY2(ty — t;)
where C = C(n).

Proof. 1t suffices to show the differential inequality. Once again pick distinct points =, y € M, a
time ¢ € (t1,t2), and a minimizing geodesic v : [0, d] — M joining z to y parametrized by arc length
at time ¢t. This theorem is only an improvement over the previous one for long geodesics, so when
d = dists(x, y) < 2K~'/2 we just note that

d
- diste(a,y) = —(n — DEd = —2(n - 1) K2

suffices for our purposes.
The interesting case is d > 2K ~'/2. Choose a parallel orthonormal frame Fy = ~/(s), Ea, ..., E,
on v and let ¢ : [0,d] — R be a smooth function such that

0<p<l, p=1on [K71/2,d—K1/2], |¢/|<2K1/2

For i = 2,...n we have by the second variation formula
d
0< L(0BupED) = | [IVy(oB)P ~ Rm(oBi 7 0B | ds
0
d
= J‘ [|80/|2 - 902 Rm(EZ7 7,7 /y,) El)] ds
0
Summing;:
d
0 [ [t = DIYP - & Ricr'. )] ds
0

So we can estimate the Ricci integral in (3.1 by
d

d d
f Ric(y',7') ds = f ¢* Ric(y',7') ds + J (1—¢*) Ric(y,v) ds
0 0 0

d d
< Jo (n —1)|¢'|*ds —I—JO (1—¢H(n—-1)Kds

<8(n—1DKY? +2(n—1)KY? = 10(n — 1)K/

The barrier inequality follows as before. O
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4. UHLENBECK’S TRICK

Suppose we have a Ricci flow (g¢)er on M x I. If m: M x I — M is the projection from space-
time to the manifold, then the bundle T5P*"(M x I) = 7#*TM < T(M x I) is called the spatial
tangent space. The vector field pointing forward in time is called T' = ;. All vector fields below
are allowed to be time dependent, except for the stationary ones. We have the following diagram
of manifolds and bundles.

TPY(M x [) —— T(M xI) ——— M x I

TM™

M

The Ricci flow (gi)ter can be seen as a metric in the spatial tangent space. In the Uhlenbeck

trick we introduce a special connection V on the bundle TSP (M x If| We will see how this
connection will help us compute evolution equations in a more geometric fashion than by simply
doing computations in local coordinates.

Definition 4.1. For spatial vector fields X, Y (i.e. sections of T®P2*(M x I)) we simply (re-)define
VY = Vi 'Y,

where VG denotes the Levi-Civita connection of g;. We’re going to drop these superscripts going
forward. For a spatial vector field X we define

VX 2= Xpo — Ric(X () = [T, X] ) — Ric(X(0)

Remark 4.2. Even though the connection V does not come from a metric tensor, we can think of
it as the Levi-Civita connection of g = g; + (R + e~ 1) dt? as ¢ | 0.

We can extend the definition of the connection to other bundles (e.g. one forms, two tensors) by
the standard pairing method.

Example 4.3. Let o be a one form on the spatial tangent bundle, i.e. € (TP*)*(M x I), and
let X be a stationary vector field. We have

(Vra)(X) = d(a(X)) — a(VrX) = d(a(X)) + a(Ric(X))
or in other words %Toz = &« + a o Ric.

Example 4.4. Let’s see how the metric tensors g; interact with V. For stationary vector fields X,
Y we have

(%TgtxX?Y) = 5t(9t(Xa Y)) - gt(%Txv Y) — g (X, %TY)
= —2Ric(X,Y) + Ric(X,Y) + Ric(X,Y) =0

That is, the Ricci flow reads %Tg = 0. This can be viewed as a form of metric compatibility.

2That is, we introduce a connection V with which we can differentiate spatial vector fields with respect to space-
time vector fields. In particular, expressions like V17T are meaningless.
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Example 4.5. The metric compatibility relation above means that musical operators also behave
well under the connection. If X is a time dependent spatial vector field, o = X, and Y is stationary
then

(Vra)(Y) = d(a(Y)) — a(V7Y) = &(Y) — (X, Ric(Y)) = (X, V) — (Ric(X),Y) = (Vo X)’
i.e. the musical operator b commutes with V. The same is true for t.
Example 4.6. Assume u e C*®(M x I) satisfies dyu = Au, and X is stationary. Then
(%Tdu)(X) = 0(du(X)) + du(Ric(X)) = (dAu)(X) + du(Ric(X)) = (Adu)(X)
by a Bochner-type formula. That is N
VrVu = AVu

By the Bochner formula again,

Vr|Vul? = AlVul? = 2|V2ul? < A|Vul?
and the Lipschitz constant of u improves with time.

Example 4.7. Given what we’ve done so far, we can compute the evolution of the volume form
dus. Since Vrge = 0 we also have Vrduy = 0. For stationary e; that form a positively oriented
orthonormal basis at time t we have

0= (%Td/it)(ela"'?en)
= &t(dut(el, ey en)) — d,u,t(%Tel, . ,en) — ... dut(el, Ce ,%T&l)
= Oi(dpe(er, ... en)) + Z Ric(e;, e;)dpe(er, ... en)
i=1

and thus dp, = —Rdus. For example, this implies that
atf fdut=—j FR
M M
for all f € C*(M).

We want to compute the Riemann curvature tensor R associated with %; in particular INE(T , X)Y
when X, Y are stationary and parallel at a point. At that same point:

(4.1) R(T,X)Y = VrVxY — VxVrY — VipxY = VrVxY + (Vx Ric)(Y)
If Z is stationary and commutes with X, Y at the point, then by the Koszul formula (and after
commuting d; with X, Y or Z)
20V xY, 7)) =0, (XY, Z)+Y(X,Z)— Z{(X,Y))
= —2X (Ric(Y, Z)) — 2Y (Ric(X, Z)) + 2Z (Ric(X,Y))
= —2(Vx Ric)(Y, Z) — 2(Vy Ric)(X, Z) + 2(Vz Ric)(X,Y)

which implies via %Tgt = 0 that

(VrVxY,Z) = Vp(VxY, Z) = 0KV xY, Z)
— —2(Vx Ric)(Y, Z) — 2(Vy Ric)(X, Z) + 2(Vz Ric)(X,Y)

Plugging back into (4.1)) we find

(R(T,X)Y,Z)y = (VzRic)(X,Y) — (Vy Ric)(X, Z) = > .(Ve,R) (e, X, Y, Z)
i=1
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where the last equality follows from the second Bianchi identity. That is,
R(T, X)Y = tr1a(V.R)(-, X)Y < R(T, X) = tr1a(V.R)(-, X)

As usual R(T, X) denotes the Riemann endomorphism on TP (M x I). Next we wish to derive a
second Bianchi identity for R.

Remark 4.8. We have to be careful here since the connection V does not arise from a metric. In
general, if E' is a vector bundle over a manifold M with a connection V (but no metric), then we
have a curvature R which is a smooth section of A?T*M ® End(FE). If we have a parallel metric,
then R is a smooth section of A?T*M @ A2E. We don’t expect to have a second Bianchi identity
in general, though.

Remark 4.9. Let us briefly recall how connections on vector bundles can be extended to bundles
formed by tensor product and taking the dual bundle. This will assist us in explaining the notation
used above. Suppose that E, F' are vector bundles over M and they each have a connection (we
will abuse notation and call both connections V). Then E ® F has a induced connection, defined
by requiring that it satisfy the product rule

Vx(@®p) = (Vxa)®B+a®(Vxp)

for sections a« € C*®(M; E), € C*(M; F), and a vector field X € C®(M;TM). Hence, we can
define a curvature on F ® F by (assume X,Y are commuting vector fields)

R(X,Y)(a®pB) =VxVy(a®p) - VyVx(a®p) = (R(X,Y)a) @8+ a® (R(X,Y)B).

The important thing to note here is that the mixed terms cancel, so the curvature R(X,Y") also
obeys the product rule. Similarly, if F is a vector bundle over M and E* is the dual bundle, then
E* inherits a connection from FE, defined by

(VxB)(a) = X(B(a)) = B(Vxa),
fora € C*(M; E), e C*(M;E*) and X a vector field. Thus, the same reasoning as above yields
(R(X,Y)B)(a) = =B(R(X,Y)a).
Finally, let us discuss the endomorphism bundle End(F) = E® E*. If f € C*(M;End(E)), then
for a« € C*(M; E), we have that
(Vxf)(a) = Vx(f(a)) = f(Vxa).

For example, it is easy to see from this that f = idg is parallel. It is not hard to check that the
curvature tensor on End(F) satisfies

(R(X,Y)f)(@) = R(X,Y)(f()) = F(R(X, Y )a).

Now that we have explained connections and curvature tensors on general bundles, let’s return
to showing that the particular connection V satisfies a second Bianchi identity. Let X, Y, Z be
stationary, commuting vector fields. Then

N (Ve(RX,Y)Z = Y ViVxVyZ —ViVyVxZ — R(X,Y)V1Z

T.X,Y T.X,Y
cyclic cyclic
= Z %TVXVYZ — %TVyVXZ — Vva%TZ + VyVX%TZ
T.X,Y
cyclic
=0

i.e. we have a second Bianchi identity Vo (R(X,Y)) + Vx(R(Y,T))+ Vy (R(T, X)) = 0 as claimed.
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5. EVOLUTION OF CURVATURES THROUGH UHLENBECK’S TRICK

The goal is to compute the classical curvature evolution equations without having to resort to
local coordinates in the usual way. In what follows we view the various R(X,Y), (VrR)(X,Y),
etc. as endomorphisms of vector fields. We have:

(VrR)(X,Y) = —R(V7X,Y) — R(X,V7Y) + Vp(R(X,Y))
= R(Ric(X),Y) + R(X,Ric(Y)) — Vx(R(Y,T)) — Vy(R(T, X))

n

= R(Ric(X),Y) + R(X,Ric(Y)) — Z(v}ei}z)(y, &) + (V3. R)(ei, X)

@
Il
—_

(V2 xR)(Y,ei) + (V2 y R)(ei, X)

M:

— R(Ric(X),Y) + R(X, Ric(Y)) —

@
Il
—

= D(R(X,e)R)(Y.e;) + (R(Y, &) R)(ei, X)
i=1

= R(Ric(X),Y) + R(X, Ric(Y 2 2 GR)(X.Y)

1=

(R(X,e;)R)(Y,e;) + (R(Y,ei)R)(e;, X)

<.
I

I
=
=3
gl

,Y) + R(Ric(X),Y) + R(X, Ric(Y))

|
e

S
Il
—_

(R(X,e;)R)(Y,e;) + (R(Y,e;)R)(e;, X)

We compute, while simultaneously writing out the action on an implied vector field Z:
D UR(X, e)R) (Y, e5)Z Z R(X,e))(R(Y,ei)Z) — R(R(X,e;)Y, ) Z
i=1
= R(Y,R(X,e;)ei)Z — R(Y, ;) (R(X, i) Z)
—_——

Ric term

; ( (X,e:), R(Y,e)] Z — R(R(X, &)Y, ei)Z) — R(Y,Ric(X))Z

From this, we may simplify our previous expression for %TR to

(VIR)(X,Y) = (AR)(X,Y) — 2 Y [R(X,e;), R(Y, e;)]
=1

+ Z R(R(X, €)Y, ¢;) — R(R(Y,e) X, e).

By the first Bianchi identity applied to the inner-most curvature tensor, we see that
R(R(X, ei)Y, 61‘) - R(R(K ei)X, ei) = R(R(X, Y)@Z', ei),
so we thus obtain the evolution equation for the curvature tensor under Ricci flow

(5.1) (VIR)(X,Y) = (AR)(X,Y) =2 Y [R(X,e;), R(Y,e;)] + Y. R(R(X,Y)ei, e;) .
=1 i=1

—Q(R)(X,Y)



BAMLER - RICCI FLOW - LECTURE NOTES 11

We remark that this is often written in terms of the curvature operator, i.e., if we regard Rm €
C®(M;End(A?T*M)), then this can be written succinctly as

VrRm = ARm +2Rm* +2Rm?.

Here the Rm? is just the square of Rm as an endomorphism. The other term also has a similar
interpretation.
To obtain evolution equations for the Ricci curvature, we may trace (5.1)). Hence,

(VTRlc )(X,Y) Z< VTR (X, e ez,Y>

= (ARic)(X,Y) + 2 (—2{[R(X,ej), R(es,ej)]ei, Y) + (R(R(X,ei)ej, ej)e, Y)).

Note that

Y (R(X,¢j)R(ei ej)ei, Y) = = > (R(X, ej) Ric(e), Y,
ij=1 i=1
and

D1 (2¢R(ei, e5)R(X, ¢j)e;, Y) + (R(R(X, e5)ej, 5)ei, Y))

(2 <R(€j, €i)R(X, 6,’)6]‘, Y> + <R(R(X, ei)ej, €j)€i, Y>)
1

I
IM:

Z?]

I
INgE

((R(ej, i) R(X, ei)e;, Y) — (Rlei, R(X, ei)ej)e;, Y))

,J

(R(ej,e)R(X,e:)e;, Yy + > (R(ei, ep)R(X, €i)ep, V)
1 i,p=1

I
:Mz

17]

i

The first equality holds by switching ¢ and j in the first term. Then the second equality uses the
Bianchi identity. Finally, to show the third equality, we expand R(X,e;)e;) in a basis, permute
indices and then undo the expansion into a basis, but for another index, i.e.

D) (R(ei, R(X,ei)ej)e;, Y)) = D (Rleirep)e;, V) (R(X, ei)ej, ep)

2,7=1 2,7,p=1
= — D (Rleiep)e, V) (R(X, ei)ep, €5
4,7,p=1
== Z (R(ei, ep)R(X, €i)ep, Y)) .
i,p=1

Putting this all together, we obtain

(5.2) (VrRic)(X,Y) = (ARic)(X,Y) + i 2(R(X, e;)e;, Y Ric(es, e;) .
i,j=1

Q(Rm)Ric

Furthermore, it is easy to trace this to obtain the evolution of the scalar curvature
(5.3) 0:R = AR + 2| Ric |
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In dimension 2, the Gauf§ curvature thus evolves by
oK = AK +2K*.
In dimension 3, because the Ricci curvature determines the full curvature tensor, we can analyze

the term Q(Rm)g;. purely in terms of the Ricci curvature. Suppose that the sectional curvatures
are k1, ko, k3. Then, in an appropriate basis e;, the Ricci curvature takes the form

Ko + K3 P1
Ric = K1 + K3 = 02
K1 + K2 P3
If s = t, then
3
Q(Rm)gic(es, er) =2 Z R(es, e, ej,et) Ric(e;, e5) =0
ij=1

because the Ricci term is only nonzero if i = j. Hence,

Q(Rm)RIC €1, 61 =

61, ej, €, 61) Ric(ei, 61')

@Mw

(Hspz + K2p3)
2(p3 + p3 + p1p2 + p1p3 — 2p2ps3).

From this, we see that
Q(Rm)Ric =

P3 + 3+ pLp2 + p1p3 — 2p2p3
2 P + 3 + pip2 + p2p3 — 2p1p3
P} + p3 + p1ps + paps — 2p1p2

Similarly, we see that the sectional curvatures of Q(Rm) are 2x3 + 2kaok3, 2k3 + 2K1k3, and 2x3 +
2K1K9.
6. GLOBAL CURVATURE MAXIMUM PRINCIPLES
Here, it is convenient to rewrite as
VrRm = A Rm + Rm * Rm,

where Rm # Rm represents a term which is quadratic in the curvature tensor. From this, we have
that

o/ Rm|? = 2<%TRm, Rm>
= 2(ARm,Rm) + (Rm * Rm, Rm)
= A|Rm|?> —2|VRm |*> + Rm*Rm*Rm.
Kato’s inequality says that |[V|Rm || < |V Rm/|, so we have
o Rm| < A|Rm| + C,,| Rm |2.

We now compute a similar expression for derivatives of Rm. It is important to remember that we
have shown that R(T, X) = tri12(V.R)(-, X ), so commuting a 7" and spatial V covariant derivative
gives rise to a V Rm term. Thus,

VrVRm+VRm*Rm = VV7Rm = VARm +V Rm * Rm = AV Rm +V Rm * Rm .
From this, the same argument as before yields
&|VRm > < A|[VRm > = 2|V2Rm|? + C,,|V Rm [*| Rm|.
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In general, we have that
V™" Rm [* < AV"Rm [ = 2[V""' Rm [ + Cpyy Y. |V'Rm||V/ Rm ||V Rm |
i+j=m
In all that follows in this section, M is a closed manifold so that we can apply the parabolic
maximum principle.

Lemma 6.1. Suppose that (g¢)c[o,r) is @ Ricci flow and that |Rm | < R at time t = 0. Then

1
| Rm (-, £) < 17(]75
R, “n
Proof. Recalling that ;] Rm | < A|Rm | + C,,| Rm|?, we consider the comparison function
1
t) = —
o0 =
which satisfies $(0) = Ry and ¢/ = C,¢%. Then | Rm |—¢ is a subsolution of -2 5—A—-C, =0anditis
initially non-positive. By the maximum principle it remains non-positive, so | Rm |(,¢) < ¢(¢). O

Corollary 6.2. If T' < o0 and (gi)we[o,r) 95 a Ricci flow then t — ||Rm || is either bounded or
limtTT ” Rm(, t)HLoo = 0.

Recall that the scalar curvature evolves by

9 .
(6.1) @RzAR+%REP=AR+Eﬁ+2mM2
Lemma 6.3. Suppose that (g¢)e[o,r) is @ Ricci flow and that R > Ry att = 0. Then
1
R('7t) =1 zt
Ry n
Proof. Same as above. O

Remark 6.4. We get a number of immediate consequences of these two comparison lemmas.
(1) Certainly R(-,0) > Ry for a negative enough Ry, so
1 n
R(t) > o5 %y
12 2t
Ro
which gives an ever improving lower bound.

(2) In particular any ancient Ricci flow (g¢)se(—o0,0] must satisfy R > 0

(3) If (9t)sefo,r) satisfies R(-,0) = Ro > 0, then T' < 77-.

(4) In particular for any long time existent flow (gt)te[o OO) and any t > 0 we have min R(-,t) < 0.
(5) Every eternal flow (g¢)er is Ricci-flat.

Proof of last claim. Since the flow is ancient we know that R > 0 at all times. Notice that it
is impossible for max R(-,¢) > 0 at any time ¢, because then by the strong maximum principle
we would have min R(-,#') > 0 for all ¢ > ¢ and the flow could only exist for a finite time— a
contradiction. Therefore R = 0, so from (/6.1)) we also have |Ric| = 0, so Ric = 0. O

Lemma 6.5. In two dimensions the condition K < 0 is preserved by Ricci flow.

Proof. In two dimensions the Ricci tensor is traceless so we have an exact evolution 0,R = AR+ R?,
and the result follows from PDE. O

We now digress into discussing applying maximum principles to essentially periodic solutions of
Ricci flow.
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Definition 6.6. A Ricci flow (g)sefs, 1o] 18 @ breather if g, = A ¢*gy, for some A > 0 and some
diffeomorphism ¢ of the background manifold. We classify breathers into three categories:

(1) A =1 are the steady breathers,
(2) A <1 are the shrinking breathers, and
(3) A > 1 are the expanding breathers.

Notice that Einstein manifolds are all examples of breathers.

Remark 6.7. In some ways Ricci flow is a tool that ideally simplifies manifolds so we can study
them. Breathers would provide obstructions to this study, because their existence means that our
Ricci flow is in some sense periodic and does not simplify our geometry. We want to study breathers
and understand them better.

It turns out that it’s very easy to discard closed steady and expanding breathers that aren’t in
essence trivial, i.e. Einstein manifolds. Perelman [Per02] proved this using the F functional but in
fact we can prove it using the curvature comparison theorems from the previous section. Discarding
non-trivial shrinking breathers is more subtle and requires finer tools.

Remark 6.8. The concept of renormalized volume is important. If (g¢)eo,7) is a Ricci flow then
we write V(t) = vol(M, g;) for the volume at time ¢. From the evolution of the volume element and
scalar curvature comparison we know that

, . n n
— = — < N —_
V(1) fMdut jMRdut a fMdut V(1)

Renormalized volumes account for periodic scaling in breathers. We define V(t) = t="/2V (t).
Certainly

V() = —gt_l_”/QV(t) +2V(1) <0
so for example lim¢ro, V(¢) exists for all long time existent flows. Also note that V (t) = vol(M,t Lg;).
The following lemma is key when discarding closed steady and expanding breathers.

Lemma 6.9. A steady breather gives rise to an eternal, periodic Ricci flow (gi)ter; i-e., there exists
At > 0 and a diffeomorphism ¢ so that ginr = ¢*gi for allt € R. An expanding (resp. shrinking)
breather gives rise to a long time existent (resp. ancient) Ricci flow such that gy, = X p*gy for a

fired X > 0 and all t.

Proof. The steady case is clear: patch the breathers together. In the expanding case let A = t9—11,
t¥ = A¥, and consider the time intervals [t} 5 ;] with the associated rescaled Ricci flow
tiﬂ B ti
I A

Then patch these flows together. The shrinking case is identical. ]

Corollary 6.10. Closed steady breathers are Ricci flat. Closed expanding breathers are Einstein
manifolds, Ric = Ag, with A < 0.

Proof. We explained that steady breathers give rise to an eternal Ricci flow, and we’ve already
shown that eternal Ricci flows on closed manifolds necessarily yield Ricci flat metrics.

In the expanding case construct a long time existent breather as described. We've seen that
V(t) = t~™2V (t) is non-increasing. Observe further that

V(1) = V(1) =vol(M,g1) = A2 vol(M, g\) = V(A) < V(1)

and therefore equality holds, i.e. equality holds in the scalar curvature comparison step which
means that R = —g;. Looking back at (6.1)) we see once again that |Ric| = 0, so again we are on

an Einstein manifold. U
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7. CURVATURE ESTIMATES AND LONG TIME EXISTENCE
The following global curvature estimates were proven by Hamilton [Ham82].

Theorem 7.1. Let (g¢)e[o,) be a Ricci flow on a closed manifold M. If [Rm| < Ag on M x [0,T)
then for allm =1

1 2
(7.1) IV Rm | < Cpym Ao (Wz + A )
Proof. When m = 1 we claim that it suffices to prove that
Ag
7.2 VRBRm|<C—
(7.2) | | 7
for times ¢ < ALO and that then ([7.1) follows for all times. The only concern is what happens for
t > ALO' In that case start the flow at time ty = ¢ — ALO so that it effectively runs for ALO units of
time, thereby bounding (due to the ”short time” estimate (7.2))
Ag 3/2
VRm|(,t) <C =CA
‘ m ‘( ) 1 / \/IO 0

which is certainly dominated by the right hand side in (7.1)), and the claim follows.
Now to prove ([7.2)) recall that

o/Rm|> < A|Rm|>—2|VRm|? + C|Rm ®
% VRm|?> < AIVRm[*> = 2|V?Rm[?> + C|VRm |*|Rm |
Consider the auxiliary function F = ¢|V Rm |? + B|Rm |? for a constant B > max{1,C’}. We have
OF <tA|VRm|? +Ct|VRm|*|Rm|+ |VRm|?
+BA|Rm >+ CB|Rm > — 2B |V Rm |?
< AF +Ct|VRm|*|Rm| + |[VRm|?
+BC|Rm > — 2B |VRm |?
<SAF - B|VRm|? +CT|VRm[* Ag + CB A}
< AF +CB A}
By the maximum principle, F(t) < max F(-,0) + t CB A3 < (C + 1)B A%, so
2
0

A
IVRm|?* < (C +1)B .

as claimed, and the case m = 1 follows.
The case m = 2 is more or less similar. We fix 7 > 0 and assume that on [7/2,7]| we have

I[VRm| < C %. The evolution equations we care about are:
% VRm|[* < AIVRm|? —2|V?Rm|? + C|VRm|?|Rm |
o VZRm > < AIV2Rm > = 2|V3Rm > + C |[V2Rm |?|Rm | + C [V?*Rm | | Rm |?
and the auxiliary function is
G=(t—7)|V*Rm|* + H|VRm |?

2
After a similar computation we see ;G < AG+C % and proceed along the same lines. The cases
m > 3 are handled by similar arguments. O

As a corollary of this global curvature estimate we get the long time existence theorem.
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Theorem 7.2 (Long time existence). If (g¢)iwe[o,r) s a Ricci flow on a closed manifold that is
mazimally extended up to T < oo, then limyr || Rm(-,t)||p» = 00. Conversely, if | Rm| is uniformly
bounded then we can continue to extend the Ricci flow.

Proof. 1If this were false then from a previous section it follows that |Rm| would be uniformly
bounded on [0,7") and therefore by the theorem above, so would all the derivatives |V Rm|,
m > 0. Since drg: = —2Ricy, we can bound all evolutions of all derivatives of the metric tensors.
It follows that the g; converge in C* to a smooth limit metric tensor gr; see [Ham82] for details.
At this point may restart the flow at time 7" by short time existence and contradict the maximality
of T. g

Remark 7.3. A similar long time existence characterization holds true with Ric in place of Rm
by work of Sesum [Ses05]; namely, on a maximal time interval | Ric| is unbounded. It is not known
whether or not it holds with scalar curvature R.

We state without proof the local curvature estimates due to Shi [Shi89)].

Theorem 7.4 (Shi’s Estimates [Shi89]). Let (g¢)we[o,r) be a Ricci flow on a complete manifold M
(not necessarily closed). Fiz a point (z,t) in spacetime. If r > 0 is such that [t —r?,t] < [0,T), the
ball B(x,t,r) = M centered at x with radius v (at time t) is relatively compact, and |Rm | < r~2 on

the parabolic neighborhood P(x,t,r,—r~2) = B(x,t,r) x [t—r2,t], then V™ Rm |(z,t) < Cpr—™2.
8. VECTOR BUNDLE MAXIMUM PRINCIPLES

Maximum principles come up very often in evolution equations. In this section we will prove
general maximum principles on vector bundles. Let’s begin by reviewing the classical maximum
principles.

Theorem 8.1 (Weak maximum principle). Let (M, g) be a closed manifold, T > 0, and suppose
ueC®(M x [0,T)) satisfies

oru = Apru + ¢(u)
Then

d
7 X u(+,t) < ¢p(max(u,t))

in the barrier sense. If F(t) is such that u(-,0) < F(0) and F'(t) = ¢(F(t)), then u(-,t) < F(t) for
allt > 0.

The strong maximum principle is the rigidity version of the weak maximum principle:

Theorem 8.2 (Strong maximum principle). Let (M, g) be connected and complete, T > 0, and u,
F as above. If u(z,t) = F(t) for some x € M and t > 0, then

d
dti II]]\%XU(‘7 t) = QS(H]]\?[.XU(, t))
in the barrier sense and in fact u(-,t') = F(t') for all t' < t.

Example 8.3. If u e C*(M x [0,0)) is such that dyu = Au and u(-,0) = 0 on a closed manifold
(M,g), then the weak maximum principle says that u = 0 at all times. The strong mazimum
principle says that u > 0 at all positive times, unless u = 0.

Now we proceed to the vector bundle setting; in what follows M is a compact manifold, possibly
with boundary, and (g;) is an arbitrary smooth family of Riemannian metrics on M. The setup is:
(1) E— M x [0,T) is a Fuclidean vector bundle with a metric (compatible) connection V.
We write V5, for the lift of the spacetime vector field % to the total space E.
(2) C c E is a subbundle of closed convex sets Cp s = C N Ey © Ey 4, which we assume to be
parallel in the spatial direction.
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M x [0,T)
FIGURE 5. Vector bundle E — M x [0,T).

(3) @ is a smooth vector field on each fibre E,; (i.e. a vertical vector field of E) such that the
flow of V/oy + @ preserves C.
(4) we C®(M x [0,T); E) such that

Vojoru = Au + @(u)

Example 8.4 (Ricci flow). We can suppose (g¢)c(o,1) i a Ricci flow, E = SymyT*M with the
connection induced from the Uhlenbeck trick so that

v(;/at Ric = ARic —|—Q(Ric).

We will later see that C' = {non-negative definite symmetric two tensors} is preserved in the sense
described above for three-manifolds.

Example 8.5 (Scalar case). We can suppose the metric g is fized, E is the trivial line bundle, ¢ is
as before (in the scalar maximum principles), and Cyy = [F(t),0). Hence, we recover the scalar
mazximum principle.

Theorem 8.6 (Weak maximum principle, vector bundles). In the setting (1)-(4) above, if u only
takes values in C' on the parabolic boundary

Opar(M x [0,T)) = M x {0} u OM x [0,T)
then w only takes values in C throughout M x [0,T).
Proof. The proof goes by contradiction. Define
s(x,t) = dist(u(z,t), Cr )
S(t) = mﬁxs(-,t)
and suppose, for the sake of contradiction, that S(ty) > 0 for some ¢y > 0. Denote by ¢t — p(z,1t),

t = to, the flow of the vector field V5, + ® starting at the closest point to u(x,tg) in Cy 4. Recall
that this flow never escapes C.
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For t > to we clearly have s(z,t) < dist(p(z,t),u(x,t)) = S(z,t), with equality at time to. We
will use 5 as a barrier function. We compute

gi(ﬂfﬂf) = {(Vojor + Vojaru(a,t)) — (Voo + ®(p(x,1))) , V dist(p(z, 1), -) )
= (Vojaru(a,t) — ®(p(z,1)), V dist(p(z, t),-))
If S(t) = maxy; 3(-,¢), then S(t) < S(t), S(to) = S(to), and
o) = mx { £ (a.0) (2. t) = B0}
in the barrier sense. If zg € M is such that $(so, to) = S(to), then

0s .
— (0, t0) = (Vgaru(zo, to) — ®(p(z0,t0)), V dist(Cag 1o ) )

ot
= <Va/atu(x7t0) — ®(u(xo, o)), V dist(Cyq 1o, )>
+ (P (u(zo,to)) — P(p(x0,t0)), V dist(Cyy 19 )
Au(xo, to), Vdist(Crg 1o, )y + |P(u(zo, to) — P(p(x0, to))|

<
< (Au(xo, to), Vdist(Cry 1o, 1)) + C s(zo, to)

(
(
Recall that R
0 = Aps(wo,t0) = Anrs(zo, to) = A[dist(u(z,to), C )]

= <Au($g, to), Vv diSt(CxO,tO, )>

T=x0

0s

because Cy ¢, is spatially parallel. Plugging this back into the inequality for 5} we see
P
(5<x07 to) < C 8(1’0, to)
SO ~
dsS dsS
—(to) < ——(to) < CS(t
2 (1) < S+ (to) < C'S(to)
so S(to) < e“%S(0) = 0, a contradiction. O

There is a corresponding strong maximum principle for vector bundles.

Theorem 8.7 (Strong maximum principle, vector bundles). Let M be connected and complete,
and (g¢), E, C, ®,u be as in the weak mazimum principle. Assume that u only takes values in C.
If u(zo, to) € 0Cyyt, at some point (zo,ty) then u only takes values in 0C throughout M x [0,t].

Sketch of the proof. Recall that u € Cy, for all (x,t) € M x [0,T), by the weak maximum principle,
so s(z,t) := dist(u(z,t),0Cy ) = 0 on M x [0,T). The idea is to use the weak maximum principle
on the bundle E = E @ R. Set

C = {(u,h) € Eyz : dist(u, 0Cyyz) = h = 0}.
Claim. C is fiberwise conve.
Claim. C is preserved by P = Vo, + @ — Ba%, where B is chosen sufficiently large.
We will prove the second claim. Choose B large enough so that
D (u(z,p)) dist(-, 0Cy 1) = —Bdist(-, 00y ).

which we can do by the Lipschitz property of ®. Now, the weak maximum principle shows that

Ve, u = Au+ @(u)
Zh = Ah—Bh
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preserves the condition s = h = 0. Now, the conclusion follows from the scalar strong maximum
principle. ]

A classical application of the strong maximum principle is the study of the borderline cases in
the preservation of Ric = 0 in three-manifolds.

Proposition 8.8. Let (gt)e[o,r) be a Ricci flow on a closed M3. If Ricg,, = 0 then Ricg, = 0 for
all t = 0. Moreover, either

(1) Ricg, > 0 for allt >0, or

(2) (M> gt) is ﬂat; or

(3) M is a quotient of N x R! for N a topological 2-sphere.

Proof. We take E = Sym, T*M, C to be the non-negative definite symmetric two tensors (depend-
ing on time), which is fibre-wise convex, and u = Ric. We know that

v(9/5t Ric = Ric +Q(Ric)

To check that C is preserved by @ we look at the associated ODE Ric = Q(Ric). When we
diagonalize Ric = diag(p1, p2, p3) at a point, the ODE is
p1=p3 + P+ p1(p2 + p3) — 2paps = (p2 — p3)* + p1(p2 + p3)
(coupled with the obvious the symmetric expressions), and non-negativity is clearly preserved.
Hence, the weak maximum principle guarantees the first statement, namely that Ricg, > 0 for all
t > 0. Assume that (1) does not apply. Then, for some xo € M and to > 0, Null(Ricg, +,) + &. By
the strong maximum principle, we have that Null(Ric, ;) + & for all z € M and t < ¢y. Choose
X eT,M with X £ 0 and
Ricg +(X, X) = 0.
We may extend X to a neighborhood in space-time. We may compute, at x, ¢,
0 = d¢(Ric(X, X)) = (Vgp, Ric)(X, X) + 2Ric(Vyp, X, X) = (Vg Ric) (X, X).
The second equality follows because Ric(X) is easily seen to vanish as well. Hence,
0 = (Vg4 Ric)(X, X) = (ARic)(X, X) + Q(Ric)(X, X).

Both terms on the right hand side are non-negative, and thus must vanish. Now, for a vector field
V defined near z,t, we have
0 = Vy(Ric(X, X)) = (Vy Ric)(X, X) + 2Ric(Vy X, X) = (Vy Ric) (X, X).
Finally, we compute
(Viv Ric)(X, X) = Vi ((Vy Ric)(X, X)) — 2(Vy Ric)(Vy X, X)
= Vi (Ric(X, X)) — 4Vy (Ric(Vy X, X))
+ 2Ric(Viy X, X) + 2Ric(Vy X, Vi X)
> 2Ric(Vy X, Vi X) = 0.
Now, using these computations, along with the fact that Q(Ric) = 0, we see that
0 = (Vg Ric)(X, X) = (ARic)(X, X) +Q(Ric)(X, X).
>0

Thus, Q(Ric)(X, X) = 0. Hence, if we write Ric,; = diag(0, p2, p3), we have that p3+p3—2pap3 = 0,
S0 p2 = p3-.

For t < tp and x € M we write Ric,; = diag(0, p(x, t), p(x,1)).

Case 1, p(z,t;) = 0 for some (z,t1) € M x [0,%p]: Then R(x,t;) = 0. The (scalar) strong
maximum principle implies that R =0 on M x [0,¢1]. This implies that Rm = 0, so (M, g;) is flat
(because we are in three dimensions).
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Case 2, p(x,t) > 0 on M x (0,t]: In this case, we see that Null(Ric,+) =1 on M x (0,%y]. We
may find a unit vector field Y in some open neighborhood of spacetime so that Ric(Y,Y) = 0. As
above, we may compute

Y,

Y

(Va/at RlC)(
Vv Ric)(Y,
(v2 v Rie)(Y,Y) > 2R1c( vY,VyY) =0

The evolution equation for Ric yields (A Ric)(Y,Y) = Q(Ric)(Y,Y) = 0. In particular, if we choose
an orthonormal basis at x,t diagonalizing Ric = diag(0, p, p), then

Y)
Y)
Y)

3 3
0= ) Ric(V,Y,V.,Y) =p> ) |V, Y[
i=1 i=1
This implies that Y is parallel, i.e. VY = 0. Thus, for a := Y®, da = d*a = 0, so H'(M,R) + 0.
Thus M is non-compact, and in particular M = N x R. O

9. CURVATURE PINCHING AND HAMILTON’S THEOREM

Throughout this section we continue to assume (M3, g;) is closed. The following two lemmas
follow from the weak maximum principle and are left as exercises:

Lemma 9.1. For any € € [0,1] the closed, convex subbundle

{Ric: p1 = ep3 = 0}
is preserved by Ricci flow. Here 0 < p1 < pa < p3 are the eigenvalues of the Ricci tensor.

Lemma 9.2. For all € € (0,1] there exists § = §(¢) > 0 such that the closed, convex subbundle

{Ric: p3 — p1 < p§°, p1 > ep3 > 0}

is preserved by Ricci flow.

Remark 9.3. The second lemma is going to be particularly important. If we divide through by
p3 > 0 we see that

(9.1) 0<1-2 <yt

P3
In particular if p3 — oo then Z—; — 1, i.e. the eigenvalues are automatically pinched when curvature
is large in the case of three-manifolds with positive Ricci curvature.

In the same paper that he introduced Ricci flow, Hamilton classified closed three-manifolds with
positive Ricci curvature as being quotients of the sphere.

Theorem 9.4 (Hamilton’s Theorem, [Ham82]). If (M3, g) is a closed three-manifold with Ric > 0
then M3 is a quotient of S®. The renormalized metrics g = V(t)_z/?’gt of the corresponding Ricci
flow (gt)se(o,1), 90 = g, converge smoothly to the round metric ast 1T provided T is the mazimal
time of existence.

Proof The proof consists of a sequence of steps. First of all by compactness we choose € = 0 with
p1 = €ps. By rescaling parabolically if necessary, we can assume that p3 < 1 at ¢ = 0. Observe
that since Ry > 0 at time ¢t = 0, the flow becomes singular in finite time: T" < co.

Claim 9.5. There exists a sequence ti, T T along which Ruyin(tg) — 00. In fact this is true whenever
we choose ty 1 T, x, € M such that R(zy,tx) T o0 and R < 2R(zy, tx) on M x [0,tg].
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Proof of claim. If we label Q) = R(xg,t;) then the global curvature estimates give:
IVRmy, | < CQY%  |V2Rm,, | < CQ2.

The goal is to capitalize on our control of the derivatives to show that curvature being large at
(x, tr) forces it to be large everywhere at ty.

Certainly if the diameter is not too large, i.e. when diam;, M < Q;1/275/2 (with § as in the
previous lemma), we have by interpolation that

[R(y,t) = Rlwy, )] < CQYPQP702 = 0@~
for all y € M. Since R(zy,t;) = Qg, for k > 1 we have
(1-CQ."")Qk < Rly ty) < (1+CQ°)Qy
and indeed curvature is large throughout.

When the diameter is large, i.e. diamy M > Q,

pinching lemma above the traceless Ricci tensor satisfies |Roictk| < CR%; 9 By interpolation again
we have

V2002 e need a different approach. By the

|VRoictk| < CQIIC—aQ}C/HM " CQ%Q;I/Q_M — QY22
By the Bianchi identities

0 1 1 1 1
div(Ricy, ) = div(Ricy, ) — 3 div(Rgy,) = §VR — §VR = EVR
and so |[VRy, | < C’Qi/zﬂm. As long as k> 1, we get

1 1 _
Ry, > §Qk and Ric, > TOQ]C on By = B(:Ek,tk,104@k 1/2)

the latter inequality following from positivity. By Myer’s theorem and the lower bound on Ricci

curvature, the diameter of the ball is in fact no larger than \/207rQ,;1/2 < 104Q,;1/2, ie. Bp=M
and therefore diam;, M < \/207‘('@];1/2. Since |VR| < CQ%?79/2 we conclude that
) - )
[R(y,ti) = Rl )] < CQY* V20 = 0"
for all y e M. As long as k » 1 we in fact have
—6/2 —6/2
(1= CQ"*)Qk < R(y.ty) < (1+CQ."*)Qs

like we did in the context of small diameters.

In any case, Rpyin(tx) — o0 as claimed. O

Remark 9.6. Notice that at this point as a direct consequence of pinching, (9.1f), we get by the
sphere theorem (resp. differentiable sphere theorem) that M3 is homeomorphic (resp. diffeomor-
phic) to a quotient of the sphere. This will not be relevant in our proof but is worth mentioning.

Claim 9.7. There exists Ty < T such that R < 2Rmax(t) on M x [0,t] as long as t = Tp.

Proof. If this were false then we could pick times t}, t; 1 T, t}. < t}, and points y; € M such that
R(yk, ;) > 2Rmax(t}) and R < 2R(yg,t;) on M x [0,t,]. By applying the previous claim to the
sequence t;. we see for k » 1 that

9 18 .18 .18
TN Z T~ ltmax 2 ——Iimin =

The first inequality is pinching, the second is our choice R(yg,t},) > 2Rmax(t;), the third trivial,

and the fourth follows because t — Ry (t) is non-decreasing since 0, R = AR+ %Rz + 2|Roic|2. This
chain of inequalities is clearly impossible. O

Rmin(t;c) = Rmin(t;s)
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Since Rpmax(tp) — o0 along a sequence, the latter claim guarantees that Rpax(t) — o0 ast 1 T.
By repeating the argument of the first claim we see that

(1— CR™2(y,0))R(y,t) < R(z,t) < (1 + CR(3,))R(y.t)

for all pairs y, z€ M and t = Tp.

Claim 9.8. We have Ruyin(t) < w~— for allt € (0,T), and Ruyax(t) < 52— fort near T.
2(T—t) 5(T-t)

Proof. We use a comparison principle on ;R = AR + %RQ + 2|Roic|2 > AR+ %RZ. By starting the
PDE at t; € (0,7) we get the standard barrier comparison estimate
1

1 2
Bty + 3001 1)

Rmin (t) =

Since we know to begin with that the flow lives through ¢t = T, the lower barrier cannot have
crossed oo before that instant. Therefore
1 2 1

——+-(t1 —T)20= Rpin(t1) < 547—7——=
Rmin(tl) 3( ! ) ( 1) %(T_tl)

Since t; € (0,7') was arbitrary, the first part of the claim follows. The second part follows immedi-
ately by pinching. ([l

—2/3

If we now rescale to g = V(t)~*?g; then

20 sy
Ogf = =2V (£)"*? Ricy, =3V () PPV (t) g1

o2
= —2V(8)™* Ricy, +3V () 5/3” R] gt

M

2 2
= =2V (1) Ricy, +5 V() R(.t) go + 5V j

Ny R — R(z, t)] gt

. 2
— —2V(t) P Ricy, + V() O] [ R R0
M
We've already shown how to bound the norms of Ric and R — R(x,t), so we get

2
2197 lge < 2V(1) 2% CR () + SV(1) ™ - CR(x. 1) =PV (1)
< CR(x, )PV (1)~

assuming (as we may) that R is large. By rescaling we conclude létg;“]gf < CR(z,t)' 792, For t
near 1" the final claim above yields

C
|0eg7 | gx < T —on

i.e. the singularity is integrable, so the g converge continuously to a metric g on M3 ast 1 T. By
the higher curvature estimates we can control all derivatives and boost the convergence to C*; see
[Ham82, §14, 17] for more details. Finally observe that the traceless Ricci tensor of g; converges to
zero by pinching, and by scale invariance so does that of gi. Therefore the limit metric g on M?3 is
Einstein and positively curved, so it is a round sphere. ]
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10. HAMILTON-IVEY PINCHING
We have already come across various curvature conditions preserved by Ricci flow. Examples of
such are:

(1) non-negative Ricci, Ric > 0,

(2) non-negative sectional curvature, sec = 0,

(3) Ric > cg, and

(4) Hamilton’s condition {Ric: ps —p—1< pé_é, p1 = eps = 0}.

In this section we concern ourselves with another pinching condition: Hamilton-Ivey pinching.

Theorem 10.1 (Hamilton-Ivey pinching). Let (gt)we[o,1) be a Ricci flow on a closed three-manifold
M3 and let (z,t) € M x (0,T). There exists an X > 0, depending on (x,t), such that

secyt = —X, R(z,t) > _3 R(x,t) = 2X (log(2Xt) — 3)

2t
Proof. This consists of checking that the subbundle cut out by the conditions above is closed,
convex, and preserved by the flow. We omit the proof. U

Definition 10.2. We say that (M?3,g) has ¢-positive curvature if for all = € M there exists an
X > 0 depending on z such that sec, = —X, R(z) > —%¢, and R > 2X[log(2X¢*1) - 3].

Remark 10.3. With this definition in mind, the Hamilton-Ivey pinching theorem can be restated
as: “l/t-positive curvature is preserved by Ricci flow.”

Corollary 10.4. If (M3, (9t)te(~o0,01) is an ancient Ricci flow on a closed manifold then sec(y ) = 0
for all =, t.

Proof. Let T » 1 and start the flow at t) = —T'; i.e., look at §; = ¢g;—7, t € [0,T). By Hamilton-Ivey
pinching, g; has 1/t-positive curvature, so ¢g; has 1/(¢t + T)-positive curvature. The idea is to see
how we can let T" — c0.
We proceed by contradiction. If Y = —minsec,; > 0 at some (z,t) then by Hamilton-Ivey
pinching
R(z,t) > inf 2X|[log(2X(t+T))—3
@0)> inf 2X[log@X(t+T)) ~3]
The value of Y is fixed (it only depends on x, t), while we are free to take T' as large as we wish.
For T » 1 sufficiently large depending on Y the infimum above is attained at X =Y, and thus

R(z,t) > 2Y[log(2Y (t+T)) —3] >0 asT 1w
which is impossible and this gives the required contradiction. ]

Remark 10.5. Recall that we’ve already shown that ancient closed solutions have non-negative
scalar curvature in all dimensions. This three-dimensional result can be viewed as an improvement
in a special case. It will also help later in our study of singularity models.

Recall that we've already classified steady and expanding closed breathers as being Einstein
while remarking that shrinking breathers are more subtle. With Hamilton-Ivey pinching we can
classify shrinking breathers as being Eintein as well:

Corollary 10.6. Shrinking three-dimensional closed breathers are Finstein manifolds, Ric = Ag,
with A > 0.

Proof. We have already explained that we can arrange for shrinking breathers to be ancient solutions
of Ricci flow with gy, = Ne(¢F)*g;. In the result above we showed that sec > 0, and therefore
Ric = 0. By the strong maximum principle this means one of two things can happen:
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(1) Ric > 0. Then 0 < p3 —p1 < pé_é as discussed in the previous section. Furthermore gy, =
AR (¢F)*gi, so R(-,A*t) = A™FR(-, 1), s0 Rmin(t) — o0 as t 1 0 and therefore p; = ps = p3 by
Hamilton’s pinching. This means we’re on a round sphere, which is Einstein.

(2) M =~ S? x R/T or M is Ricci flat. In either case we see that diam(M, g;) stays bounded
away from zero as t 1 0, which contradicts being on a shrinking breather.

O

11. Ricct FLow IN TWO DIMENSIONS

Ricci flow in two dimensions is in some sense harder than in three dimensions because we don’t
have tools such as pinching available to us anymore: we can’t control ratios of sectional curvatures
because there’s only one at each point. On the other hand we have other tools to our avail, such
as uniformization. In two dimensions Ricci flow is the same as unnormalized Yamabe flow:

Gtgt = -2 Ricgt = —Rgt

Remark 11.1. Please observe that the flow preserves the conformal class of the original metric,
i.e. it preserves the complex structure. Sometimes it is referred to as Kéhler Ricci flow, when in
two dimensions.

In three dimensions we cannot hope to find exact values for the maximal time of existence T,
but in two dimensions we can do better. If M? is closed then one of three things can happen.
(1) x(M) > 0. The the flow exists up until a maximum point 7" = %]‘(JJ’M‘]‘;) and then turns into
a point. Upon renormalization we have
(T - t)_lgt - 2ground as t T T

X(M) = 0. The flow exists forever and converges to a flat metric as ¢t — oo.
(3) x(M) < 0. The flow exists forever and upon renormalization:

tlg — 20hyp ast oo
For a treatment of Ricci flow in two dimensions one can refer to [Ham8§|, [Cho91].
12. RADIALLY SYMMETRIC FLOWS IN THREE DIMENSIONS
Let’s consider M = S3 = {N} u §? x I U {S} with initial metric
go = (1+ f'(5)%)ds® + f(5)°ge

We look to assign an f that looks similar to:

f

Theorem 12.1 ([AKO04]). The flow above develops a singularity in finite time.

(1) If r1 ~ ro ~ 13 then the evolution resembles a shrinking potato shape, later a sphere.
(2) If rg < 11, r3 then it resembles two dumbbells with a connecting neck that pinches off.
(3) If r3 K 19 < 11 then the flow develops a "nose”.
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OO

FIGURE 6. Instance of 1 ~ ro &~ r3, a shrinking potato.

CO = =

FIGURE 7. Instance of ro « rq1,73 with a collapsing neck.

(= o— o

FIGURE 8. Instance of r3 « 19 « r3 with a nose. If we blow up at the neck we will
see S? x R. If we blow up near the tip of the nose we will see a Bryant soliton.

13. GEOMETRIC COMPACTNESS

The contents of this section can be found with detailed proofs in [Bam07]. We first define
Gromov—Hausdorff convergence

Definition 13.1. For (X}, d)) metric spaces, we say that they converge in the Gromov-Hausdorff

sense, i.e., (X, di) CH, (X o, do) if there exist ¢y : Xop — X, which are “approximate isometries”

in the sense that
Be, (im(¢y)) = X
for some ¢, — 0 and if
|prdk — do o (x2) — O,
as k — 0.

A simple example of this is %Z” GH, Rn. The maps ¢y are given by “rounding down.” Another

example is ST xR GH, R. In both of these examples, we have suppressed the metric in our notation.

k
We remark that we will often want to only consider complete metric spaces.
This notion is not very well behaved when considering non-compact spaces/limits. For example,
suppose we are interested in the following sequence of cusp metrics on T ™! x R

gp = ds® + e Bt kgr .
We might ask: what does this sequence converge to in the Gromov—Hausdorff topology? Recall
that ggs = ds® + e 2%ggn—1 is one model for the hyperbolic metric. So, as k becomes large, we can
think of this as dilating the T™~! factor, so the sequence should be converging to hyperbolic space.
On the other hand, note that all of these metrics are isometric, using the shift s — s— g Hence, the
sequence also should be converging to (M, g1). Shifting even further back, the sequence will look
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like its converging to R! We note that none of these limits actually exist in the Gromov—Hausdorff
sense as defined above, but we can give a definition so that this makes sense.

Definition 13.2. We say that (X, dy,xr) converges in the pointed Gromov-Hausdorff sense if
there is R > 0, so that Ry — o0, € > 0, so that ¢, — 0 and maps ¢y, : B;%(I:O (o) — X so that

(1) BXr(¢r(BR*(2:))) > Bp* (zo0)
(2) [kdr — dool oo x2) < €k
(3) di(zk, Pr(T0)) < €.

The fundamental importance of the Gromov-Hausdorff topology is the nice compactness prop-
erties enjoyed by Riemannian manifolds. For example,

Theorem 13.3. For (Mg, gr) Riemannian manifolds such that

(1) dim My < N < o

(2) diam(My, gx) < D < w0

(3) Ricg, > —K.
Then (My, gi) sub-converges in the Gromov-Hausdorff sense to a complete metric space (X, ds)
(any convergent subsequence has a unique limit). Moreover, the Hausdorff dimension of (X, dy)
s not more than liminfy_,. dim My < N.

We may drop the diameter bound if we we move to pointed Gromov—Hausdorff topology

Theorem 13.4. For (Mg, gi, xy) pointed Riemannian manifolds such that

(1) dim My < N < o0

(2) Ricg, = —K(R) on B%’“ (xg) for k = ko(R).
Then (Mg, gk, xx) sub-converges in the pointed Gromov-Hausdorff sense to a complete metric space
(Xoo, Aoy Top )

It is natural to ask about regularity of the limiting metric space. Can we give conditions under
which the limit is smooth? Can there be collapsing? To answer these, we define a more stringent
notion of convergence

Definition 13.5. A sequence of pointed Riemannian manifolds (My, gk, zx) converges in the C'*-
sense, (Mg, gk, xr) LA (Mo, goo, oo ) if there are € N\, 0 and maps ¢y, : B?g‘f (o) — M} which are
diffeomorphisms onto their image and so that

(1) BY@n(BY (2:0))) > M )

k
(2) Ioigr = gooll et

o
(3) diSth(l’k,(ﬁk(xoo)) < €.

We note that this clearly implies pointed Gromov—Hausdorff convergence.

< €k

Definition 13.6. We say that (M’', ¢, 2') is e-close to (M, g, z) if there is a map ¢ as in the previous
definition, which satisfies all of the listed conditions for ¢; replaced by e.

Theorem 13.7. If (M, gk, xi) is a sequence of complete Riemannian manifolds with
V" Rmyg, |g, < Cm,r

on Br(zk), for k = ko(m, R) and
inj(Mg, gk, z) = tp >0

for x € Br(xg) and for k = k1(R), then after passing to a subsequence, (Mg, gk, x) converges in
C® to (M, 9o, Too) @ smooth, complete Riemannian manifold.
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Theorem 13.8. For (M™,g) a Riemannian manifold and xo € M, r > 0, if

(1) |Rm| < Kr=2 on B, (z0)

(2) and vol(B,(xg)) > wr™
then inj(xg) = i(K,w)r > 0.
Proof. The assumptions were chosen to be scale invariant, so assume r = 1. Since the conjugate
radius is known to be bounded from below in terms of the data, i.e. it is > ¢ = \/% by the Rauch
theorem, we only need to worry about short geodesic loops through xg. The map

n Town M
T = exp,, : BX'(0) = B."™" — B,(x0)

is a local diffeomorphism and a covering map. The claim is that the radius can be shrunk sufficiently
(depending on K, w) so that m becomes a diffeomorphism. Suppose that the shortest geodesic loop
7 through x¢ has length ¢ = || < 155—if it were longer we would have been done.

Let k < 15; and y € BS’{O(O). The straight segment from y to 0 € R™ projects to a path in M
that ends at xg. Follow that path. Then follow the loop v around xy k times. Then follow the
prior path backwards to end up where you started on M. This loop lifts to a path on the local

cover BX"(0). Consider the function:
fi: Bejio(0) — B (0)

that maps each y above to the endpoint of the lift of the path described. Notice that 7 (fx(y)) = 7(y)
for all k, but because of the non-trivial topology the lifted endpoints fi(y) are all different, i.e.
#71(y) > 15 and therefore

10
volmg| gzn (o) = —5 vol Bejio(2o)

By volume comparison the volume on the left is bounded from above in terms of the data, and
the volume on the right is bounded from below in terms of the data. Rearranging, we get a lower
bound for /. g

Corollary 13.9. If (M™,g) is a complete Riemannian manifold and xqg,x1 € M with x1 € Br(xo)
and |Rm| < K on Bag(xo) then

inj(M, z1) = i(inj(zo), K, R) > 0.
Proof. We have that vol(Bi(zg)) = C(inj(xo), K). Hence, if d = dps(zo, 1), because we have that
vol(Bag+1(x1)) = vol(Bi(xp)), then

vol(B1(z1)) = C(inj(xo), K,d) > 0.
This gives the desired lower bound for the injectivity radius at x;. U

Hence, we may restate our C*-compactness result as

Theorem 13.10. If (My, gi, x) is a sequence of complete Riemannian manifolds with
‘vm ngk ’9k < Cmﬁ

on Br(xg) and either

vol(By(zg)) = w > 0 for all k = ko(m, R)
or equivalently

inj(Mg, g, z) = ¢ > 0 for all k = ko(m, R)
then after passing to a subsequence, (My, gk, xx) converges in C* to (M, oo, Ton) @ smooth, com-
plete Riemannian manifold.

For Ricci flows, there is a very nice compactness property, thanks to the previous results along
with Shi’s estimates.
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Theorem 13.11. For (M, (9k,t)te[Ty 4 To0]s T) Ricci flows with complete time slices, if

(1) Thy = Ti0 <0, Tojy > T 0 = 0,
(2) for all R > 0 and for all Ty o < T < T3 < Tz o we have

|Rm™* | < K(R, T}, T3)

on B9 (zy,) x [T1, T3], and
(3) VOlgkyt:O(ng’t:O (xg)) > wo > 0,

then (Mg, k0, k) <, (M, goo,0, Ton) and writing ¢y, as the associated diffeomorphisms, we have
that
CC’J
Dk (Gr,t)ie(Tr 4,00 — (Goo,)te(T1 0,0]

which is a Ricci flow with complete time slices.

Example 13.12 (Losing topology). As with Gromov-Hausdorff convergence, plenty of things could
happen in the limit even for a C*-convergent sequence. For instance we could certainly lose topol-
ogy. If (M™,g) is smooth and xg € M, then (M™, kg, x¢) <, (R™, grn,0) as k — o0. The topology
of M is pushed away in this blow up.

Example 13.13 (Multiple subsequential limits). Suppose (M, g;) is a sequence of smooth Rie-
mannian manifolds, and M = My# M4 . .. is their connected sum. Suppose we pick a sequence of
points xp among the M;. Depending on how we pick those points, we can get different subsequential

limits.

Example 13.14 (Gaining topology). Suppose M? ~ R? is a semi-infinite cylinder capped on the
stde, with corresponding metric g. It has trivial topology. If xj is a sequence of points that escapes
to infinity, then (M2, g, x},) LRSI R, which has non-trivial topology.

Example 13.15 (Spheres converging to a hyperbolic manifold). Even more interesting things
can occur. Suppose M ~ S and K < S? is a knot such that S*\K carries a hyperbolic metric

(most knots K allow this). If U is a tubular neighborhood of K, then U\K ~ T? x [0, 00) with o
corresponding to the spine of the tube. A natural metric on U\K is the hyperbolic cusp metric

gk = e g + ds?

We can extend this to a hyperbolic metric g on the manifold M\K with non-trivial topology. If we
cap off the infinite end of M\K by gluing a S' x D? at a point . sufficiently far out then we get
back to being ~ S®. Let g;, be the metric carried by this S, and let xq be fived. Then

o0
(83,gk,fc0) LZial hyperbolic manifold
by our very construction of the gi, prior to capping off.

One positive result is that if the limit manifold is compact, then in fact all manifolds sufficiently
far out in the tail end of the sequence are diffeomorphic.

Theorem 13.16. If (Mg, gx, zk) o, (Mo, oo, Too), Moy compact and connected, then My, ~ My,
for k> 1.

Proof. By definition the maps ¢y : B%@w (xow) — My, are diffeomorphisms onto their image, and
Ry — o0. Since the limit manifold is compact, the radii Ry eventually cover the entire manifold,
and therefore the ¢ are global diffeomorphisms. O

We also have the following compactness theorem which is really just a corollary of our pointed
C®™-topology compactness theorem.
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Theorem 13.17. Let (M™, (g¢)e[o,1)) be a Ricci flow and T' < oo be the first singular time. Assume
that

(1) We have a sequence (x,ty) € M x [0,T), tx, 1 T, such that Qr = | Rm |(xg, ty) — 0.
(2) For all A < oo there exists C(A) < o, ko(A) < o such that
[Rm | < C(A) Qp

on the parabolic neighborhood B(a;k,tk,AQ:/z) X [t — AQ;l,tk) for all k = ko(A).
(3) We have no volume collapse, i.e.

voly, B(zp, te, Qp %) = wQ. ™

for all k = ko(A) and a fivred w > 0.
Then (M™, (ngle(titk))t,xk) -, (Mo, (gt)te(—w0,0), Too), an ancient Ricci flow.

Remark 13.18. When n = 3, by the Hamilton-Ivey pinching technique we can show that sec = 0
on My, x (—00,0]

Remark 13.19. It is easy to construct sequences that satisfy the first two conditions above, but
the third condition is non-obvious. In fact Perelman’s significant contribution is his no local collapse
theorem which essentially says that the first two conditions guarantee the third under no further
assumptions.

14. ParABoLIC, L1-YAU, AND HAMILTON’S HARNACK INEQUALITIES

In this section we discuss Harnack inequalities for heat equations with the goal of getting to
Hamilton’s Harnack inequality for Ricci flow, [Ham93]. In the first part of the section everything
we say will be true on R™ but a lot can be easily generalized to the case of manifolds with Ric = 0.

If ue C®(R™ x [0,00)), u > 0 is a solution of the heat equation

oru = Au

with reasonable decay at infinity, then we have the well known convolution property

u(a:,tg) = Ktz—t1 (.I - y) u(y,tl) dy
RTL

where K is the parabolic heat kernel,

|z

Ky(x) = (4nt) ™2 exp ( — %), t>0,z,yeR"

In fact this convolution property characterizes solutions of the heat equation. When working on
curved manifolds such exact convolution identities are harder to find, so we would like to:

(1) characterize u without resorting to the convolution property, and
(2) have some sort of rigidity case that is fulfilled precisely by the heat kernel.
We compute:
x n ||
VK, = ——-K d AK; = 0K = —— K+ — K,
t o 1t an t 228 op 11 + A

Consider the ”Harnack quantity”

2
Hﬁt2<5‘tu— [Vl ) + Ly
U 2
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Note H =0 for u = K;. We further compute:
8t((9tu) = A((?tu)
0r(Vu) = A(Vu) (for general M you'd also get a Ric term here.)
O Vul? = AlVul? — 2|V2ul?
Vul? o Vul?  |Vu|*omu
o (08 _ 2l _ v

u u u?
_ AVul? B |Vul?Au _q |V2ul|?
o u? u
2 2 4 2,12
([T (FITOET Va7
u u u u
2 2 4 2,12
_ A(|Vu| ) +4<V U,V12L®VU> _g |Vz;| _q |V=ul
u u u u
Therefore
_ |Vul? n n
9 B |Vul|? B (V2u,Vu @ Vu) |Vu|* |V2u|?
+t(A(8tu) A( - ) 4 - F2 2 )
1o 1|Vu? n (V2u,Vu®Vuy |Vu|t [VZu|?
_ — 942, (28 _ 2 A ’
= (0 — A)H =2t u( ” P Te 2 3 + o + 2 )
2 2
=2t2u’v v Yu®Vu ., 91~
U U 2t

We have thus shown:

Proposition 14.1. When u > 0 is a solution of the heat equation, the Harnack quantity

|Vul? n

satisfies (0y — A)YH = 0. If u = Ky then we have the exact evolution 04H = AH.

H = t2 (&gu -
U
By the maximum principle one obtains:

Theorem 14.2 (Li-Yau, [LY86]). If u > 0 is a solution of the heat equation (with reasonable decay
at infinity), then

orw |Vu? n
< Z>0
u u? 2t

Corollary 14.3. If0 < t; < ta, u> 0 is a solution of the heat equation, and x1,xs € R"™, then

(w2,12) > u(ar, ) [ 2 o o1 = 2ol
u(x = u(xy, exp | ———
2,02 1,01 t p 4(t2—t1)

Proof. Join (z1,t1), (z2,t2) by the straight spacetime segment

to —1¢ t—11
t) = n o teltta]
(%) o n T L™ [£1, 22]
Then
d (Vu,x9 — 1) |Vul||ze — 21

— t),t) = 0 = Opu —
dtU(/Y( )7 ) U+ tQ—t]_ tU tQ—t]_
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By the Li-Yau inequality,

d —
— logu(y(t),t) = o _ w2 m ] [Vl

dt u t2 *tl u
Ve e =] [Vul_n
w2 to—t; 2

2
>_1|:c2 1] n

4 to—1t1 2t
and the result follows by integrating. O
Remark 14.4. Such a result also holds on manifolds with Ric > 0.

Now we proceed to discuss Hamilton’s Harnack inequality for Ricci flow. In what follows (M™, g¢)
is a Ricci flow on a closed manifold with non-negative curvature operator, R = 0.

Remark 14.5. When n = 3 this is equivalent to having sec = 0.

Look at the space-time metric § = g + (R + 2%) dt? on M x [0,T) and also define the following
algebraic curvature tensor on T'(M x [0,T)) by

S(X,Y,Z,W) = (R(X,Y)Z,W)

S(X,Y,Z,T) = P(X,Y,Z) = (VxRic)(Y,Z) — (Vy Ric)(X, Z2)

S(X,T,T,Y) = M(X,Y) = (ARic)(X,Y) — =(V?R)(X,Y) +2)_ R(e;, X, Y, ¢;) Ric(es, ;)

.3

1
— Ric(Ric(X),Y) + % Ric(X,Y)

1
2

and all the obvious symmetries, for X, Y, Z, W € T,M. In that case we have
~ 92 ~
VoS = AS + . S+ Q(S)

where V is a particular connection on space-time; more details can be found at [Bre(9]. By an
application of the maximum principle we get a conservation law of the type 7S > 0 is preserved”,
which is short for:

M(w,w) + 2 P(u,w) + R(u,u) =0

for all we T,M, ue AT M. Plugging in v = v A w and tracing in w gives:

Theorem 14.6 (Hamilton’s Harnack inequality, [Ham93|). Let (M™, (gt)ie[o,)) be a Ricci flow on
a closed manifold with R = 0. Then

1
OR+2(VR,v)+ 2 Ric(v,v)—l—%R? 0

for any vector field v.

Corollary 14.7. Let (M", (gt)sefo,1)) be a Ricci flow on a closed manifold with R = 0, and x1,
xQEM, 0 <ty <tg. Then

dis‘cg1 (z1,22)

i1
R(za,t2) = — exp
( ) to 2(752 —11)

) R(xl, tl)
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15. RICCI SOLITONS

Definition 15.1. We say (M, g, X) is a Ricci soliton if (M, g) is a Riemannian manifold, X €
C*(M,TM), and
2 Ric+Lxg =2\g

for some A € R. The soliton is (i) "shrinking” if A > 0, (ii) "steady” if A = 0, or (iii) ”expanding”
if A <0.

Definition 15.2. We say (M, g, f) or (M, g,V f) is a gradient soliton if f € C*(M) and (M, g,V f)
is a Ricci soliton. The corresponding equation is:

Ric+V2f = \yg
Proposition 15.3. If (M, g, X) is a Ricci soliton, then AX + Ric(X) = 0.
Proof. Take 2 Ric+Lxg = 2A g. Tracing and dividing by two gives

R+ divX =nA

If we take the divergence instead and use the contracted second Bianchi identity and the fact that
Vl(VZXJ + Vin) = AXj + VJVZXz + RiCij Xj, we also get:

VR + V(divX) + AX + Ric(X) =0
Subtracting the gradient of the prior equation from the latter gives the required result. O

Remark 15.4. Note that every Killing field satisfies this equation. This is consistent with what
we would expect, seeing as to how we can always modify a solution X by a Killing field and not
affect the Lie derivative.

Proposition 15.5. If (M, g, X) is a gradient soliton, then VR = 2 Ric(Vf).
Proof. Take Ric +V2f = \g and trace it:

R+Af=n)
If we take the divergence instead, we get

%VR+ VAf +Ric(Af) =0
Combining the two gives the required result. O
Corollary 15.6. If (M, g, f) is a gradient soliton then
R+ |Vf|? = 2\f = const

Similarly
—Af 4+ |Vf]> = 2\f + n\ = const

and
const

+ An

1 1
SR+Af =S|V +Af =
Proof. We prove the first identity; the others follow similarly. Plug V f into the soliton equation
and use the proposition above:
2 Ric(Vf) +2V2f(Vf,) =2AVf = VR+ V|Vf[2=2AVf =0
The result follows. 0

Example 15.7 (Euclidean soliton). Euclidean space with its canonical metric is a steady soli-
ton, but in fact we can even prescribe a potential f to it. For instance, (R”,an,%MxF) s a
shrinking/steady/expanding soliton depending on the sign of \.
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Example 15.8 (Cigar soliton). A wvery important example of a steady two dimensional soliton is
2 2
dr 1du gnd f = —log(1 + 22 + y?).

the cigar soliton: (R2, g, f) with g =

1+a?+y?

F1GURE 9. The cigar soliton resembles a cylinder at infinity.

Example 15.9 (Bryant soliton). Another important example of a steady higher dimensional soliton
is the Bryant soliton: (R™, dr? + a(r)? ggn-1, f) for some a(r) ~ /T at infinity.

Remark 15.10. Solitons give rise to Ricci flows. If (M, g, X) is a soliton and ¢ denotes the flow
of X, 0t¢p = X o ¢, then the family of metrics

—2At gi)’% og(—t)9 when A < 0
gt = 4 =2\t qﬁ’% log(—t)9 when A > 0
brg when A =0

form a Ricci flow. When A < 0 it is a long-time existent flow (¢ > 0), when A > 0 it is an ancient
flow (t < 0), and when A = 0 it is an eternal flow (¢ € R).

Corollary 15.11. Ricci solitons give rise to breathers.

The following theorem summarizes what we have already shown for breathers, and also introduces
a new two-dimensional result.

Theorem 15.12. The following are all Finstein:
(1) Closed expanding or steady solitons.
(2) Closed shrinking 3-dimensional solitons.
(3) Closed gradient 2-dimensional solitons.

Proof. We have already shown the first two statements, so it remains to prove the third. We
may assume M? is orientable, else pass to its double cover. By the gradient soliton equation
Ric +V?2f = A\g and the fact that Ric = %Rg on surfaces, it follows that V2f is conformal to g and
therefore

Vi = S Afg
Since M? is orientable, it admits a complex structure J. We define Y = JV f and claim that it
is Killing. Indeed, since J is a parallel endomorphism one finds
(VA(IV), BY = (IVAVS, B) = ~(VAVf,JB)y = Vf(A,JB) = — Af (A, TB)
By switching the roles of A and B we get
(£y9)(A, B) = (VaY, B) + (VY A) = — Af (A, JB) — L Af(B,JA) = 0

and thus Y is Killing.

Notice that by GauB-Bonet and the soliton equation we get x(M?) > 0, which says that M? is
a topological sphere. Notice that we may assume Y # 0, or else there’s nothing to prove. In that
case, the existence of Y forces (M2, g) to have an S' symmetry. Since M? is topologically a sphere,
f has two extremal points Zmin, Tmax. Let v be a minimizing geodesic from Zpin t0 Tmax-
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Lmin Lmax

FIGURE 10. The surface M?, the level sets of f, and Y = JVf.

Notice that |V f| is constant on the level sets of f: Y|V f|? = QV%’fo =Af{,Vf)=0. Set
F(s) = f(y(s)), so that F'(s) = [V f(s)| = |Y| o fibre length, and F"(s) = V?Y,ﬁ,f = :Af. Now
we use the soliton equation —Af + [V f|? —2f = 0 to compute:

F//:%Af:%(F/)2_F:>F///:F/F//_F/

Then
(/8 n/AE n A n AV B nl 1 AVIVAREE n A8 n/AY 1 N2/
FVEY = FI(F"Y — F'F" = S((F")2) = F(F" = (1))

Integrating,

1 " 2 1 " 2 ¢ (2 1 / 2 1 / 2

FUF'OF = 500 = | PP ds = 5 (0 + 5P 0
The first two terms cancel because they refer to the rate of change of the length of the fibres near
the tips (which are equal in absolute value) as do the last two terms (they are both zero). By
monotonicity F’ = 0, so F” =0, so F’ = const, so in view of having just two endpoints F’ = 0, so
F = const, so f = const. O

16. GRADIENT SHRINKERS

The goal of this section is to study gradient shrinkers and in fact prove that closed solitons
are gradient; we have only done this so far in the case of steady and expanding solitons, and
three-dimensional shrinkers.

We begin by studying the properties of gradient shrinkers, with the goal of finding a simple PDE
that is satisfies by the potential f. Recall the gradient soliton equation Ric +V?2f = \g. If we set
¢ to be the flow of V f, then we’ve seen that g, = —2)\t¢% log(—t) Y is an ancient Ricci flow, ¢ < 0.

If we define a time dependent
f('at) = f % ¢$log(—)\t)

then Ric +V2f(-,t) = —%g = %g, for 7 = —t. Then in view of the soliton identity Af + R = -
we compute

0uf = (VI = VI = =Af + VI = R+

For convenience we write u = 7~ ™2¢~/ so that Vu = —7~"2¢ =V f and Au = 772~ |V f|? -
77"2¢=fAf. Then the evolution for f, written in terms of 7, reduces to
oru = Au — Ru

This is referred to as the conjugate heat equation in Ricci flow because (0 — A)* =0 — A+ R in
spacetime.
We can now prove that:

Theorem 16.1. All closed Ricci solitons are gradient solitons.

Proof. The only case we have not proven yet is that of shrinkers, so we will assume we are on a
shrinking soliton (M, g, X). By definition 2Ric +Lxg = 2\g, A > 0. It would be convenient if we
could show that X = V2f for some f, but that is not true in general because we can only capture
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the vector field X up to a Killing field. Instead we want to rewrite Lxg = 2V?2f for some smooth
f. We do that by finding f so that

S = Ric+V2f — \g
vanishes identically. By taking the divergence of both sides we get:

1
divS = §VR + VAf + Ric(Vf)
If instead we plug in V f into the equation for S we get
1
S(Vf) = Ric(Vf) + 5V|ny2 —\Vf
Subtracting,
1 1 9 .
V(§R +Af =S|V + /\f> — divS — S(Vf)
It will be more convenient to rewrite this (by multiplying by e 7T) as:
1 Ligrp ~f _ div(Se—!
[V(2R +Af -S|V Af)]e — div(Se~?)

Since we're on a soliton, S = V2f — 1Lxg = (V(Vf — X))™™, and |S|*? = (V(Vf — X),S).
Integrating by parts, we find that

f|5|2e—f v — J<V(Vf _ ), Syeav
= — f<v f =X, div(Se ))dv

_ —J<Vf - X,V(%RJr Af - %ny? + /\f)>e_de
From this we see that S = 0 is equivalent to solving
(16.1) %R+Af—%|Vf\2+)\fzcoeR
Equivalently, setting h = e~//2 gives the PDE:
(16.2) Ah — %Rh + Ahlogh = —%coh
Consider the associated functionals
(163)  E[f] = f (%|Vf|2 + %R #Af)e av = Eln] = 2f VA2 + %RhQ — Mh2log hdV

Observe that is the Euler-Lagrange equation for E[f] subject to Se‘f dV = const, and that
is the Euler-Lagrange equation for E[h] subject to {h*dV = const. In particular, we have
reduced solving to minimizing E[h] subject to an L? norm constraint.

Note that by interpolation

Jh%ghdv < sfhwdv + CJthV

and for § = 6(n) > 0 sufficiently small, Sobolev embedding translates this bound into
JhZIOgth < €J|Vh]2dv + th%zv

In view of our L? norm constraint on h and the boundedness of R on closed manifolds, we conclude

E[h] > sfvm? e
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In particular the functional is bounded from below and, furthermore, any minimizing sequence is
automatically bounded in H'. Since h — h?logh is continuous with respect to the H' norm, any
minimizing sequence subconverges to a minimizer.
To show the minimizer is smooth we employ a slightly different argument. Suppose now that we
evolve a function f by
Orf =div(Vf—X)e ™) = Af = |Vf?+ R—nA+(Vf,X)

for some time parameter 7 that is independent of any flow (there is no flow). Then

d d

—F = —f|5|2€_f av and — |efav =0

dr dt
i.e. E decreases for as long as S # 0, and we stay within the same constraint class Se‘f dV =
const. The evolution simplifies if we set u = e/, because it collapses to a linear parabolic equation

Ozu = Au+ (R —n\)u+ {(Vu, X)

which therefore exists through ¥ — o0, while at the same time 0;E = — §|S[?udV and 0z {udV = 0.
By the Harnack inequality and the fact that E[f] > —C we get L™ bounds on u, and therefore

that it converges smoothly to a minimizer u, which is strictly positive, and so fo, = —loguy, is
smooth. Backtracking, this means we can solve (16.1)) and therefore our shrinking soliton was a
gradient soliton to begin with. O

17. F, VW FUNCTIONALS

The F, W functionals come naturally out of studying gradient solitons the way we did in the
previous two sections. The F functional is (up to a multiplicative constant) simply the energy E|f]
on steady solitons (A = 0),

Flg. f] = fM<|Vf|2 LRy av.

and the W functional is (also up to a multiplicative and additive constant) a scale-invariant ad-
justment of E[f] on shrinking solitons (A > 0).

Wlg, f,7] = JM [T(\VfP +R)+ f - n] (4r7)"2 e~ @V

(: fM [7‘(|Vf|2 +R) +27Af — n] (drr) /2 e dv> ,

since A = % on a shrinking soliton. In view of our prior computations, it follows that:
Theorem 17.1. On a steady soliton Ricci flow with 7 = —t, 0, f = Af — |V f|? + R, it is true that
d

—F = —QJ |Ric +V2f|2 e~/ av
dr M
Theorem 17.2. On a shrinking soliton Ricci flow with 7 = —t, 0, f = Af — |[Vf]? + R— 2, it is

27
true that p 1
—W = —2Tj |Ric +V2f — —g|?e ™/ dV
dr M 2T

Remark 17.3. There also exists a functional W™ for expanders, but we will not go down that
path here.

These monotonicity formulae hold for an arbitrary Ricci flow. Integrating by parts

= —0B(Af — |V )
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and therefore
—2Tf (V2f,8) (4nr) 2 e f dV = SW[AS — |V f]?].
M
Ifo.f=R- 45 <= (97((4777')_"/2 e/ dV) = 0, then on a shrinking soliton
d

1 1
(17.1) —W = —QTJ (Ric ——g¢,Ric+V2f — —gde T dV.
dr M 2T 2T

We claim that:
Lemma 17.4. The identity (17.1) is true on any Ricci flow on a closed manifold.

Proof. Observe that d.df = dR, 0.|Vf|? = 2AVR,Vf)—2Ric(Vf,Vf). In view of the evolution
of f,

Dy _ JM {%[T(yw\? +B)+ [ —n} (gmr) e S av

= f [\Vf|2 + R+ 21(VR,Vf) — 27 Ric(Vf,Vf)
M

— 7AR — 27| Ric|* + R — 23] (4rr) "2 e S av.
T
We compute
div(VRe ™) = «(Vf,VRye ™/ + ARe™/
1
div(Ric(Vf)e /) = <V VRYe / + (Ric, V2fye ) — Ric(Vf,Vf)e !
div(Vie )= Afe !l —|Vf2ef
Putting it altogether,
Ay _ f [Af — 27(Ric, V2f) — 27| Ric | + 2R — 1] (4rr) ™2 e~ qv
dr M 2T

1 1
= 27 JM<Ric —5.9 Ric +V2f — Zg> (4r7) 2 e av

which was the required result. O
As a direct corollary we get the Perelman’s monotonicity for the W functional:

Theorem 17.5 (Monotonicity for W). If (M, g) is a Ricci flow on a closed manifold, T =t — tg,
t<to, and o f = Af — |V + R— 3=, then
d

1
—W = —2TJ |Ric +V2f — — |2 (4xr) ™2 e T av
dr M 2T

The corresponding thing is true for F:

Theorem 17.6 (Monotonicity for F). If (M, g;) is a Ricci flow on a closed manifold, T =ty — t,
t <to, and O, f = Af —|Vf|*> + R, then
d

—F = —2J |Ric +V2f2e T av
dT M

Definition 17.7. For a Riemannian manifold (M, g) we set
MM, g) = inf{F[g, f]: f e fdv =1}
M

and, when 7 > 0,

w(M, g,7) = inf{Wlg, f, 7] : jM(AﬂTT)‘”/Q el dv =1}
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The monotonicity formulae imply that:

Corollary 17.8. If (M, g¢) is a Ricci flow on a closed manifold, then N(M, g¢), n(M, g, to —t) are
non-decreasing in t.

The machinery of this section gives another proof of the main theorem of the previous section:
Theorem 17.9. Closed shrinking breathers are gradient shrinking solitons.

Proof. We've already seen how a shrinking breather gives rise to an ancient flow (gt)se(—c0,0)> grt =
Ao* g, A€ (0,1). Then
M(M7 g, _t) < M(Mv 9xts _)‘t) = M(M> )\Qﬁ*gt, _)\t) = M(M7 )\gta _)‘t) = M(Mv at, _t)

so equality holds at the first step, and by looking at the monotonicity formula we conclude that we
are on a shrinking gradient soliton. O

18. NO LOCAL COLLAPSING, I

Theorem 18.1. For M compact, (zo,t9) € M x[0,T) and 0 < r < 1, assume that | Ric |(-,t9) < r~?2
on B(xg,ty, 7). Then,

voly, (B(xo,to, 7)) = kr'".
Here, k = k(M, go,T) is a constant.

Proof. Set T = to +r? —t and fix a cutoff function ¢, which is 1 on [0,1/2] and cuts off to 0 at 1.
Set, for some A to be determined,

f(,r?) = —log(¢(disty, (xo,-)) + A,

. (disty (.
u(-,r?) = (4mr?) "3 ¢ (lst0(07)> A

T

and

We choose A so that

Ju(-, 7“2)d,ugto =1,

. /disty o
r—" J(47r)_2¢ (18 t;i( 0 )> e A =1.
n disty, (2 .
A =log (47T)_27“_"J ¢ <ls fol 0’)>
B(Io,to,T) r

< log <(4ﬂ)_gV01t° (B(:Co’to’r)) .

7:7’1
Hence, we would like to bound A from below. Notice that

W[go,fWZ]:JB( VIR R S e

disty, (z,..
<J 7 <C2+n210g¢(lst0(o’)>+An>u(~,r2)
B(ro,to,?“) r r r

<C+A—j ¢<dls%($0)> (47W2)—Z¢<(hs%(%w))e—,4
B(zo,to,r) r r

diSttO@Ov‘) diSttO(zo,-)
SB(CE(),tOJ‘) ¢ < r log ¢ r
S ¢ disty (g,
B(zo,to,r) r

or equivalently

Rearranging this yields

<C+A-
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voly, (B(xo, to,r)

< A
C+ +CV01tO(B(l‘0,t0,T/2)

<O+ A
In the last inequality, we used Bishop—Gromov. From this, the claim follows, because:

(M, go, to + 1) < p(M, gp2,1%) < C + A. O

19. LOG-SOBOLEV INEQUALITY ON R"

Note that on R™, the W functional takes the form

Wisrl = [ (IVP+ f=maar) bed = [ (r@2Af = [T4P) + 1 m)dmr) Ee s

(%)
Note that (*) is constant when (R",d, f) is a shrinking soliton, i.e., when f = JL|z|?, it is easy to
see that W[ f, 7] = 0, because the integrand vanishes. On the other hand, for general f, if we write
u:= (477)"2e~/ and assume that {u = 1, then we have that

n

2
Wlu, 7] = f (TW;L‘ —log((477)2u) — n) u
__[IvuP? _J _
= TJ " 5 log(4mT) ulogu —n

The computations above imply that this is non-increasing in 7 when d;u = Awu. It is convenient to
set v(x,7) := 72u(y/T2,7). Notice that

W[U(” T)a 1] = W[uv T]'
Furthermore, by our knowledge of the Euclidean heat kernel, we have that for m > 7

1 1 ]e—y?

u@m) = f (471')%(7'1 — T)%e T uly,m)dy.

Hence,

@)= | n A
v(x, 1) = - —e =T u(y, T
V) @i -t e

n

™ — i ey’ %
= n w € tmeT T u(’\/ le,T)dy.
(4m)2 (11 —7)2
It is easy to see that this tends to
1 7l‘$|2
e 4t
(4m)=
Hence, by monotonicity of W, we see that
Wlu, 1] = 0.

Thus, we have proven

Theorem 19.1. If u e C(R™) with fu =1 and u > 0, then

n o n n |Vul?
— + —log(2 1 < -1 —_—
2+20g(7m)+fuogu 20g<f ” >

Note that this holds also if we allow for sufficiently fast decay at infinity rather than compact
support.
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20. LOCAL MONOTONICITY AND L-GEOMETRY

We fix (M, g¢) a Ricci flow. Recall that we have considered 7 = ¢ty — ¢ and functions f satisfying
orf = AF = |VfP+R— .
2T

In this case, we have

d . 1 _n
o Wlgigrsfo] = =27 [ |Ric+92f = g (dmr) Ee

Set
r:=(T2Af — |[Vf|> + R) + f — n)u,
where u = (4%7)_%e_f . In particular, because in the proof of the monotonicity of W all we did is
integrate by parts, we must have
2
O (vdp) = div(X)dp — 27| Ric + V2 f — ?g|2udu,
T

for some vector field X. In particular, we have

2
orv = div(X) — Rv — 27| Ric +V2f — —g|?u.

‘2
2T

g
In fact

Lemma 20.1. We have that

1
s—glfu<o.

0rv — Av + Rv = —27| Ric + V2 f — 5
-

This is a straightforward computation.
Corollary 20.2. The quantity
max(r(2Af — IVfI?+R)+ f—n)
18 non-increasing with 7.

Corollary 20.3. If u is the heat kernel for 0 — A + R based at (xg, 7 = 0), then writing u =
(4n7)"2e~ T, we have that

T(2Af — |[Vf*+R) + f —n <0.

This follows from the asymptotics of the heat kernel. Equivalently, we have that
1
27

Now, assume that u is a heat kernel and let «y : [11,72] — M be some smooth curve, which we
think of as a smooth curve in space-time. We compute

1 1
an+§|Vf|2—§R+ f<o.

d
L FO)7) = 0nf +(VEAY < 00F + 51V + S P < S (WP + R) = o .

where from now on it is understood that the norm |4/| is evaluated at t = ¢y — 7. Hence

(01, 7) < VA By er + RO 0 = 7)),

From this, we are motivated to define
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Definition 20.4. We define the L-length of v by
9= VA R+ R ) to = )

It is sometimes convenient to define

U(y) = ﬁﬁﬁ)'

Theorem 20.5. For u a heat kernel as above, then for v a path in spacetime between (x1,71) and
(2, T2), we have that

((47rs) 2 ufws, 2))V7 o)
((4m71) 2wz, 1))V
Corollary 20.6. For v :[0,7] — M with v(0) = zy, we have that

u(T,T) = (47??)_56_ L)

This follows from the asymptotics of the heat kernel.
As such, these results motivate our definition

Definition 20.7. For (Z,7), we define
L(z,7) := inf {L(7) : 7(0) = 20,7(7) = T},

and .

g r T) = _L(Ev?)

@7) = 5ome
Definition 20.8. A curve attaining the infimum in the definition of L is called a minimizing
L-geodesic.

It is not hard to show that a minimizer always exists and check that the £-geodesic equation for

v is

1 1

VxX — §VR+ Q—X + 2Ric(X) =0,
T
for X =+,
Lemma 20.9. We have that
(0 — A+ R)(4rr)"2e " <0,

1.€.,

00— A+ |VI2P—R+ 2 >0.
2T

Proof. The first variation of £(y) gives the geodesic equation and the second variation gives
1 1 2 1
< S|V -ZR+ — — —1. O
2|V | 2 * nt 27
We remark that this is somehow related to the following theorem

Theorem 20.10. Let (M,g) denote a fixred Riemannian manifold with Ric = 0. Suppose that
oru = Au is the heat kernel based at xy. Then

675 dist(x,x0)?

u =
(47r7')

In fact, this follows because the right hand side is a subsolution to the heat equation

(at - A) ( 1 mn e_idlSt(I I0)2> g O-
(4mT)2




42 NOTES BY OTIS CHODOSH AND CHRISTOS MANTOULIDIS

The proof of this uses the Laplacian comparison principle (Ric > 0 = Adist < ¢ )
Now, we summarize where we have gotten with computing various equations satisfied by £.

00> A — V2 + R~ —
2T

1 o 1 1
aT£+§|W\ —§R+§€—0
T(AL— |V +R)+ f—n<0

It is convenient to reparametrize 7 to 7 = s2. The reason for this, is that now
5

1

L(y) = =

-] <2

Vx' X' =25 VR + 45 Ric(X') = 0.

d'y2

ds

+ 252R> ds

Furthermore, X' := ‘Cjﬂ satisfies

Lemma 20.11. The limit V = lim,|g/T X € T;, M exists.

Proof. Changing variables, the limit equals limg g % X' and this limit does exist. O
Definition 20.12. If v : [0,7] — M is an £-geodesic at (zo,tp) and v = lim. g /7 X, then we let
Lexpy, 4,(v) = 7(7)

Remark 20.13. Lexpy ; (v/24/T) — exp,, 4, (v) as 7 | 0.

Example 20.14. Suppose that we are on R™, xg =0, tg =0, 7 = —t. Then

£0) = | vr P = 5 |1
and therefore
(1) Lz, 1) = $ 2L
(2) l(z,t) = % as with the heat kernel,
(3) ( )
(4) v

&

x,

=VET =Ty

Observe that 6(7(7),7) = %.

%\

I8

4

Theorem 20.15. If L = 2\/7 L, then 0;L + AL < 2n. Furthermore, if J(v,7) = det Lexp] ; (v)
then

ddT ((4777) n/2 exp(—ﬁ(ﬁgo, (v), T)) J(m)) <0

Remark 20.16. Our motivation for the second part of the theorem is that

T

d
(0 — A+ R)((47r7)_"/26_£) <0= o J(47r7')_"/2€_e dpg—r <0

Proof. The first part of the theorem can be obtained by computation. For the second part, assume
for simplicity that ¢ is smooth and has no critical points near (z,7). Let Y1,...,Y, be L£-Jacobi
fields along ~, that is,

.
Yi(r) = 2o Lexpg, 4, (0(0))
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Choose the initial Y7,...,Y,, so that the endpoints Y;(7),...,Y,(7) are orthonormal. Note that
[Yi,~'] = 0, so that

Summing over ¢,
d
2% J(v,7) = 2R + 2AL < 20,0 + 2| VL] + -
dr 2T
% d d n
EJ(U, T) < Eﬁ(ﬁ eXPy, 1 (v),7) + >
and the result follows. O

Corollary 20.17. By this monotonicity (letting 7 | 0) we conclude
72 exp ( — U(Lexpy, 4, (v),T)) J(v,7) < onelvf?,
This will show up in the proof of no local collapsing.

Definition 20.18. The quantity

~

Vagio(7) = [ (4mr) 2 dp
M

is called the reduced volume.

Remark 20.19. By the previous theorem the integrand of Vis pointwise decreasing, so %‘N/ < 0.

21. NO LOCAL COLLAPSING, II
Using L-geometry we can prove no local collapsing using local tools, unlike before.

Definition 21.1. A Ricci flow (M, (gt)se0,7)) (not necessarily compact) is said to be k-noncollapsed
at scales < p if for all (zg,t9) € M x [0,T), 0 < r < p, r < y/fg such that |[Rm| < r~2 on the
parabolic neighborhood B(zg,to,r) x [to — 2, o], it follows that voly, B(zo,to,) = k™.

Theorem 21.2. If T' < o, and (M, (gt)e[o,r)) s a Ricci flow on a closed manifold M then the
flow is k-noncollapsed on scales < 1, where k = k(M, go,T).

Lemma 21.3. If (wg,t0) € M x[0,T),0 <7 < 1,7 < /T, | Rm | <772 on B(zo, to,7) x [to—72, 0],
then
VOlto B(.T(],to,?") > k!

=

rn

where K = K (Va1 (r?)).

Proof. Let o € (0,1) be a constant that is to be determined. One can show that Lexp] . (v) €
B(zo,to,7/2) if 7 < &®r? and |v| < 13=. Moreover, in view of the curvature bounds we have

1 Oé2T'2
0, 0%?) > mf{f VE (/P + Rydr} > ~Ca
2ar Jg
on B(xg, tg,r/2). By monotonicity of reduced volume,

Voo (1) < Vo 10 (0217) < f (4ma2r?) 2 O Gy
B(J)o,to,’l‘/Q)
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+ J (Ama’r?) 2! Ay, —a2r2
M\B(:Eo,to,T/Q)

)_"/Qa_"eco‘ voly, _o2,2 B(xo, to, r/2)
rn

< (4w
C!27"2
+ f (4mar?)e EP ) J(5, a2r?) dv
D,2,2\B(0,1/10a)
where D, = {ve Ty, M : T — Eexpio,to (v) is minimizing up to 7}. Then

VOltO B(JZ‘(), lf()7 ’I”) 4 2n€—|v|2 de

Vioto(r?) < C(a) rn fT \B(0,1/10a)
(L‘O bl Q

We may choose a > 0 small enough to absorb the rightmost term into the left hand side, and the
result follows. O

Proof of[21.2 Let K = sup|Rm(0)|, and ¢; > 0 be such that |Rm| < 2K on M x [0,t1].
Claim 21.4. There exists x1 € M such that L(x1,t1) < ny/to — 1.

Proof of claim. Recall that for L = 2,/7L we had 0L + AL < 2n, or equivalently 6;L > AL — 2n.
Therefore if, for the sake of contradiction, min L(+,t1) > n+/tg — t1, then there would exist £ > 0
such that min L(-,t1) > 2n(tg—t1) +&. By the evolution equation for L and the maximum principle,
min L(-,tp) > €, and this of course contradicts that L(zg,ty) = 0. O

Claim 21.5. L(-,0) < ny/tg — t1 + Loy/to < Cy/tg on B(xg,0,4/t1).

Proof of claim. By our choice of ¢; and of 21 we have

to
L(-,0) < L(z1,t1) + VTP + 2K) dr < nv/to — t1 + Lov/to.
to—11
The second inequality of the claim is clear. O

By the monotonicity of reduced volume,

~

Vwo,to (TZ) = ‘N/wo,to (to) = (47Tt0)n/2f et d o
B(ml,o,\/h)
> Cle—CVOIO B(x17 07 V tl) > C/e—C >0
/2

which combined with the previous lemma gives the required result. O

22. K-SOLUTIONS

It is worth summarizing where we’ve gotten so far. Suppose (M, (g¢)se[o,7)) is a Ricci flow with
singular time 7' < c0. Choose ¢, | 0. Let (zg,t;) € M x [0,T — ei] be such that

|Rm| < Q = |Rm|(zg, tg) on M x [0,T — &i]
Then Q — o, ti 1 T. We have established that

C® subseq.
(Ma (nglelt)vxbtk’) —

The sequence of manifolds on the left satisfies
(1) |[Rm| <1,
(2) [Rm|(zg, ty) =1,
(3) k-noncollapsed at scale v/Q.

The limit manifold on the right satisfies:

(Mom (gt)te(—w,D]a Ton, 0)
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(1) |[Rm| <1
(3) k-noncollapsed at all scales,
(4) in 3D: sec = 0 (Hamilton-Ivey pinching), R(z«,0) > 0, so R > 0 everywhere.

Furthermore, Hamilton’s Harnack inequality on ancient solutions becomes
R+ 2{(VR,V)+2Ric(V,V) =0

Definition 22.1. An ancient Ricci flow is a x-solution if:

(1) it has complete time slices,

(2) |Rm| < K on (—0,0],

(3) the curvature operator is R = 0 on (—o0,0],
(4) R> 0 on (—0,0],

(5) dtR+ 2{VR, V> + 2 Ric(V,V) =

(6

) M x (—o0,0] is k-noncollapsed at all scales.
The flow will be called a k-#-solution if it satisfies all of the above except perhaps for (2), and (4)
is replaced by R > 0 at t = 0.
Theorem 22.2. If (M, g;) is a k-+-solution and |Rm|(0) < K, then the flow is also a k-solution.

Example 22.3. Shrinking spheres and the Bryant soliton in three dimensions are all examples of
k-solutions. The cigar is not an example, because it is not k-noncollapsed at all scales for any
k> 0.

Theorem 22.4. If (M", g;), n = 3, is a k-*-solution that contains a line, then M =~ N x R where
(N1 G;) is another k-x-solution.

Proof. This is similar in spirit to the proofs in the maximum principle section. By Cheeger-Gromoll,
M splits isometrically into N x R at time ¢ = 0 and the nullity of the Ricci tensor initially is
nontrivial. By the strong maximum principle this nontriviality persists, and by the same argument
as before, so does the splitting. O

22.1. Comparison geometry.

Definition 22.5. If zg, 1, 2 € M, &1, T2, T3 € R? are such that dist(x;, x;) = dist(Z;, ;) for 4, 7,
then we call AZ(Z1T2 a comparison triangle for Azgxix2. Similarly, we call Zxgx122 a comparison
angle for Zxgxixs.
Theorem 22.6 (Toponogov’s theorem). Let (M, g) be complete, with sec = 0. Ify1, vy2 : [0,1] > M
are minimizing constant speed geodesics out of xg, then

(1) 271(31)30072(82) is decreasing in s1, Sa,

(2) Lyi(s1)zora(s2) < L7e,

(3) s~Ldist(v1(s),72(s)) is decreasing in s, it converges to |9;(0) —~4(0)] as s | 0, and therefore

dist(v1(s),72(s)) < [74(0) = 45(0)]

s
In the equality case, Avy1(s)zoy2(s) spans a flat triangle.

Theorem 22.7. If (M, g) be complete, with sec = 0, then (M, \g,x9) — (S,d,x) in the pointed
GH sense as \ | 0, where (S,d,zs) is a metric cone, i.e. S = N x [0,00)/N x {0} with the tip
being o, = [N x {0}].

Remark 22.8. (N,d) is called the link of the cone, the distance on the cone is given in terms of
the distance on N by d((z, s), (y,t)) = /5% + t2 — 2st cos d(z, y).
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Proof of Theorem. Let S’ = {vy : [0,00) — M minimizing geodesic rays of constant speed, v(0) =
x0}, and define zo, = {7y = x0}. Then

dist(71(s), 72(s))

S

d(71772) = lim
sToo

defines a pseudometric on S’. Pick representatives S < S’ for S’/{y1 ~ 72 < d(71,72) = 0} so that
(S,d) = (5,d) is a metric space. Then (S,d) is in fact a metric cone, and B (x4, R) is relatively
compact for all R > 0.

Claim 22.9. If vy, 72, ... €S, Y1, Y2, ... € S, are such that d(g,r) < C < ©, d(yk, k) — 0,
and s, — o, then
dist (vx(sk), Ve (sk))
Sk

— 0

Proof of claim. If this were false, then after passing to a subsequence we can assume that the limit
is = £ > 0 and that v — Yo, Tk — Yoo (the latter two because the set of initial speeds is compact).

Then d('Yoo/700) < d('Yocv'Vk) + d(’Yka’NYk) + d(ﬁkaﬁoo) — 0, 80 Yoo = Yoo Finally,

dist (v (sk), Y(Fk(sk))) < dist (& (sk), Yoo (51)) N dist(yoo (sx), T (k)
Sk Sk Sk

and the claim follows. (Il

Now we prove the Gromov Hausdorff convergence. Let s, R > 0. Set fsr : B]%(xo) - M
v+ (s). Observe that

| distag(fy-12 g (1), Fr-12.g(32)) = d(71,72)] = [VAdist(y1 (A1), 92(A712)) = d(71,72)| = 0

uniformly as A — 0. The final claim is that:

)

Claim 22.10. For every e > 0 and s » 1, B3 (fs,r(B3(7))) 2 BM(x0).

Proof of claim. If not, then there exists s — 0, x € Bé‘gR(:co), such that dist(y(sg), xr) > sge for

all v € S. Let v : [0,5¢] — M be a minimizing geodesic from zq to zj. Note that v € B3 (o).
Up to a subsequence, v — 7Yoo, and

< dist (Yoo (%), Tk)
Sk

N

175 (0) = 7(0)] — 0
a contradiction. 1

O

Definition 22.11. Let (M,g) be a complete manifold with sec > 0. We define its asymptotic
curvature radio to be

R(M, g) = limsup R(z) dist(z, z0)?
as dist(x, zg) — oo. This value is independent of x(, as the notation suggests.

Theorem 22.12. If (M, g) is a k-+-solution, then R(M, gg) = o0.

Proof. We argue by contradiction—assume R(M, gg) < . Look at the blowdown (M, A\g,z9) —
(S,d,z5). In view of the curvature bounds R < R(M)/dist® and x-noncollapsedness, the Gromov
Hausdorff limit S\{zs} is smooth. Away from the tip, therefore, we have the flow convergence

o
(Ma Ag)\fltwr()) I (MOOmgz?ovxoo)-

Claim 22.13. (M, g°) is flat, i.e. (My,g™) = (R™\{0})/T.
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Proof of claim. The vector field 0, on the smooth cone satisfies Ric(d,, 0,) = 0, so by the maximum
principle and the fact that R > 0, the nullspace of the Ricci tensor is nontrivial and parallel, with
0r € null(Ric). If [V, 0,] = 0, then V0, = V5,V = 1V € null(Ric) as well, so null(Ric) = TM, i.e.
Ric =0, i.e. Rm =0. O

By flatness, R(M) = 0 and there exist a; — 0 and r; — o0 such that

|Rm | < 6_1/2% on (B(zo,0,7)\B(x0,0,71/2)) x [-r2,0].
k
Write Yoo = 0B(74,0,3/4) = S and note that Yo, = S"!/I' with principal curvatures 4/3, S =~
R™/T. The convergence gives us surfaces ¥ < B(xg,0,7;)\B(xo,0,7,/2) with principal curvatures

~ % . i for all times [77“,%,0]. Choose €, € M compact such that 0, = X;. By a focal point
estlmate diamg, Q) < ry, for t € [—r2,0]. Note that B(z,0,7/2) < Q.

By Hamilton’s Harnack inequality, R(y, —r?) < R(z,0)e /20 < eY2R(x,0) < %, 50 |Rm| <
Tk

o0
i‘—%’“ on B(xg, —r2, 1)), so (M, r,:Qgrz,:vo) <7, (R™, ggn,0), since the limit has to be smooth, flat,

and conical. Therefore ¥ ~ S"~!, so I is trivial, and (M, rk_?go, x0) CH, (R™, ggrn,0). By rigidity,
(M, go) has to be flat, so R = 0, a contradiction. O

We’re going to need the following point picking lemma.

Lemma 22.14 (Point picking lemma). Let (M, g) be complete, f : M — (0,00) continuous, x €
M, and d > 0. There is a y € B(z,2d f(x)~Y?) such that f(y) = f(z) and f < 4f(y) on

B(y,d f(y)~"?).

Proof. Set yo = x. If y = yo works, we're done. Else there exists y; € B(yo,d/+/f(y0)) such that
fly1) > 4 f(yo). If y1 works, we’re done. Else keep going. By compactness, this process has to
terminate. Note that the radii form a geometric series, so our points never go past the radius
specified in the statement. O

Lemma 22.15. Let (M,g;) be a non-compact k-x-solution. Then there exist sequences yo, yi,
..€ M, dy, di, ... > o0 such that:
(1) R(yk,()) diSt(y07yk)2 — O, and
(2) R(> 0) <4 R(yka 0) on B(yka Oa dk R(yka 0)_1/2)

For this sequence, and Qy = R(y,0), the rescalings (M, (ngQ;1t),yk) 7, (M, g{°, ), a k-
solution.

Proof. Since (M, g;) is a non-compact k-#-solution, R(M) = oo. Therefore there exist x € M,
dist(zg, 2;) — o0, such that R(zy,0) dist(xg,zx)? — 0. Set dy = % dist(xg, z1,) R(xk, 0)Y/? — oo.
Apply the point picking lemma to get yx € B(x,0,2dg R(xg,0)~Y2). Then disto(xo, yr) =
3 dist(zo, 2x), R(yx,0) = R(xy,0), so R(yk,0) dist(yg,z0)> — o0. Also, R(-,0) < 4R(yy,0) on
B(yx, 0, dy, R(yx,0)~1/2).
To check the convergence statement, one can check all properties of k-solutions. Note that
curvature is bounded in view of the point picking argument. ([l

Lemma 22.16. Let (M,g) be complete, sec = 0, yr € M, dist(yo,yx) — 0. Then there exists a
minimizing ray o : [0,00) — M, o(0) = yo, and s — 00 such that dist(yo, yx) = dist(yx, o(sk)).
Furthermore, Zyoyro(sy) — .

Proof. Choose a minimizing geodesic between yg, yi (parametrized by arc length). The initial speed
vectors subconverge to another vector, v;.(0) — vy € Ty M, and v, — 0 = Yy, -
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By definition, Z(v;,(0),0'(0)) — 0, so Zyeyoo(£,) — 0, where £, is the point on o that is the same

dist (yx,0 (Lk))
Ly

distance from yo as yy is. Then — 0, so there exists s; > 0 such that dist(yg, o(si)) = k.

Then an isosceles triangle is formed, and Zypyoo(sp) = Zyro(sk)yo < Z(v,(0),0'(0)) — 0, and
Zyoka'(Sk) =7 —2 Zykyoa(sk) — T. ]
Remark 22.17. By what we’ve shown so far in combination with Cheeger-Gromoll, all non-
compact k-x-solutions split off a line at infinity. More specifically,

(M, 97) = (N"7 x R, gq)
with N"~! a k’-solution, for some &’ > 0.

Corollary 22.18. All two dimensional k-+-solutions are compact.

Proof. If we had a non-compact model, then it would split off a line at infinity and be of the form
N' xR, for N a x’-solution. This cannot be, because N'! is one dimensional so it has no intrinsic
curvature, so it cannot have positive scalar curvature. ]

Corollary 22.19. If (M?, (9t)iefo,1)) 18 a Ricci flow on a mazimal time interval, then the singularity
model is S* or RP?. If M? % S?, RP?, then T = .

Proof. If T < o0, we can pick ¢ T T, Qr — 0, zx € M, so that (M, (ngQ—l(t_tk)),ZUk) o2,
k

(My, g, 0), a K-solution. Since the latter is compact, R > 0, M must be ~ S? or RP2. [l

Definition 22.20. Let (M, g) be complete, with Ric = 0. The asymptotic volume ratio is defined
to be 1B
V(M) = lim vol B(zo, 1)

r—00 rn
As the notation suggests, this is independent of xg.

Lemma 22.21. If (M, g) is complete, Ric >0, x € M, r > 0, then vol B(z,r) = V(M) r".
Proof. This is a simple application of Bishop-Gromov. U
Theorem 22.22. If (M", g;) is a k-%-solution, then V(M, g;) = 0.

Proof. The proof goes by induction on n. If n = 2, then all k-*-solutions are compact, so of course
V(M) = 0. In higher dimensions, compact models are again clearly fine. In the non-compact
case, we apply the previous point picking argument, and get (M, ngletv yr) = (N x R, 97°, Yoo)-

Since vol B(x,r) = V(M) r™ is scale invariant, this passes to the limit. However, by the inductive
hypothesis V(N"1) = 0 so V(N"~! x R) = 0 as well, so V(M) = 0 as well. O

Theorem 22.23 (Volume controls curvature). Assume (M, g;) is a k-#-solution, (x,t) € M X
(—0,0], » > 0. Then

C
voly B(z,t,r) = ar™ = R(x,t) < w
,

Proof. The proof goes by contradiction. If this were false, then there would exist a sequence of
counterexample x-#-solutions (My, gF), x1 € My, ry, > 0 such that voly B(zy,0,7%) = ary, but such
that r? R(xx,0) — c0. By the point picking argument, and writing dy = %rk R(x1,0)Y2, there
exist yi € B(xg,0,7) such that Qp = R(yx,0) = R(zk,0), R(-,0) < 4Qk on B(yg, 0, dy Q,;l/Z). By
Bishop-Gromov, voly B(yg, 0, di Q,;l/Q) > 2_"adZQ,:n/2.

At this point yg, 7}, = dj Q;l/z have the same properties as xj, rp with a replaced by 27 "«.
Blowing up, (Mk,nglet,yk) — (M, 9, yx), a k-solution with R(ys,0) = 1 and V(My) =

27"q. This last statement contradicts the fact that asymptotic volume ratios of k-x-solutions
vanish. ]
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Theorem 22.24 (Curvature controls volume from below). Let (M, g;) be a k-x-solution, (x,t) €
M x (=00,0], r > 0. Then

R(z,t) < r 2 = voly B(z,t,r) = B(k,n) "

Proof. If this were false, then there would exist a sequence of counterexample x-#-solutions (My, gF),
x, € My, ri, > 0 such that R(zy,0) < r,;Q but r, " volg B(xo,0,7) — 0. By Bishop-Gromov,
voly B(x, 0, s)

hm —_— = W
s}0 sh "

so there exists s; € (0,7) such that s, volg B(xg, 0, s3) = %wn. In the rescaling limit
o0

_ C
(Mk:a Sk 295ita xk) I (MOOa G0, ono)

we have volg B(z4,0,1) = %wn.

We claim that Z—’Z — o0. If this were false, then up to passing to a subsequence we would have
convergence to a finite p. By rescaling,

VOloB(ZEk,O,Tk;) 50 = VO]OB(J:@aOap)
n n
Tk 1%

a contradiction. Therefore :—: — o0 as claimed.

1

2
In that case, in the rescaled limit R(x4,0) < limsup i—’; = 0, so by the strong maximum principle
k

My, is a quotient of R™ by some I'. Note that I' has to be trivial, or else we would have V(My) =0
and that would violate k-noncollapsing. Therefore My, =~ R", in which case it’s impossible that
volg B(%s,0,1) = %wn. O

Corollary 22.25 (Bounded curvature at bounded distance). If (M,g) is a k-x-solution, x €
M, and Q = R(xz,0), then R(-,0) < C(A,k,n)Q on B(z,0,AQ"Y?). Moreover, R(-,0) >
C(A,k,n)"1Q on the same ball. In other words, if x,y € M, and
R($,O)d0($,y)2 < Aa
then
R(y,O)d()(fL’,y)Q < B(Avﬁan)'

Proof. We will prove the second version of the statement. By the explicit bound on R(zx,0) and

the “curvature controls volume from below” theorem, we have that
volg(B(zx,0,71))
— > B(A, k,n),
where r = R(z, O)_%. Moreover, we have that
VO]O(B(yv 07 T+ do(l’, y))) = VO]O(B(xv 07 7’))

Thus, we obtain

VOIO(B(y7O7T+d0($7y))) > "

> A k,n
(r+do(z,y))" (r + do(z, y))"ﬁ( )
1
= : 1 ﬁ(A, K, TL)
(1 + d()(.’lf, y)R(I‘, 0)5)71
1
Z .
(1 + A)’I’LlB(A, K’J n)
Now “volume controls curvature” implies that
R(y,0) < K(A, r,n) < K(A, k,n)r % = K(A, k,n)R(x,0). O

(r + do(x,y))
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22.2. Compactness.
Corollary 22.26. The set

Mo = {(M, (g¢)1,x) : K-*-soliton, R(x,0) = 1}
18 compact with respect to smooth convergence.

Corollary 22.27. There is 1y, > 0 so that if (M, (g:)) is a k-%-soliton, then
VR, [0R ), [V Rm "2, [0 R ||~ <

This follows from a simple blow-up argument, using the fact that the quantities are scale invariant
and the compactness of k-#-solitons obtained above.

22.3. 2-d k-solitons. We would like to show that all 2-d x-solitons are round. One approach is to
show that for M ~ S?, the entropy

Rvol M

is scaling invariant. One may show that as R > 0, N(M,g) < 0 with equality if and only if M is
round. Moreover, under a Ricci flow with R > 0, we have that 0, N (M, g;) = 0 with equality if and
only if (M, g¢) is round. Now, set

N = inf{N(M, go) : (M, (90)e,) € Ma,s}.
By compactness N = N(M,g,) is attained for some (M,g,). For t < 0, we hence have that

N < N(M,g,) < N(M,go) =
This implies that (M,g,) is round. Moreover, for (M, (g;)¢) € Ma,,, we have that
N(M,gt) = N,

so (M, (g¢)¢) is round.
We discuss an alternative approach. Recall that

WM, g, f, 7] = f(r(|Vf|2 +R)+ f—n)drr)"2e T dp,,
and
w(M,g,7) = inf{W[M,g, fi7]: J(47T7')_ge_fdug = 1}.

We now define
v(M,g) = inf{u(M,g,7) : 7 > 0}.
Lemma 22.28. If R > 0 then
lim u(M,g,7) = 0.

T—00
Hence, v > —o0 and
v(M,g) = inf{u(M,g,7) : T > 7 > 0},

for some T.

Proof. Substituting f — 5 log7 for f, we have
WI[M,q, f, 7] = J(T(|Vf’2 +R)+ f— glogT — n)(47r)_75le_fd,u > TC — glogT - C,

for 7 large. O

Monotonicity of p implies
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Lemma 22.29. We have that
ﬁtl/(M, gt) = 0.

Lemma 22.30. Let (M™, (gt)e[0,1]) be a Ricci flow with T < co0. Assume that there is a singularity
at time T with is modeled on a compact k-solution (M2, g°). Then, (M2, g°) is a shrinking soliton.

Here, when we say that the singularity is modeled on (M2, gi°), we mean that there is ¢, T
and A\, — oo, then

(Ma Akg)\;lt.i_tk) - (MOTCLM g?)
in the smooth sense.

Proof. Because v is monotone, we obtain that it is constant on (M2, ¢/°). In particular, for t; <
to < 0, we have that

<M7 )\kg)\gltlﬂk) - (Moza g?f)

and
(M. Aty 14, 0) — (M 670,
Thus
V(M Mgy 1 0,) — VML, )
and
v(M, Akg)\glt2+tk) — v(My, g7).

If v(M2, 9°) < v(ME, g)), then for ki, k2 » 1, then
Nttty < A + gy
Both sides tend to T, and it is not hard to see that this is a contradiction. ]

Corollary 22.31. If (M?, (9t)tefo,r)) with T < oo is a singular time, then the singularity is round.
Hence, for M ~ S?%, we have that v(M, g) < v(52, ground)-

Theorem 22.32. All 2-d x-solution are round.

Proof. Let (M, (g¢):) be a k-solution and = € M. Compactness guarantees that

t——0

(Ma R($7£)9R(x,f)*1t+f - (MOOag?O)'

The same proof as before implies that v(My,¢;°) is constant and hence (Mg, g°) is round. In
particular, we have that v(M, g;) is constant. O

22.4. Qualitative description of 3-d k-solutions.

Theorem 22.33. For (M3, (g:):) a k-+-solution with two ends, then (M,g;) ~ (S? x R,g,), the
round shrinking cylinder.

Proof. There is a line in (M, go). Because sec = 0 in (M, gg) it is isometric to the product metric
on N x R. Hence, the strong maximum principle guarantees that

(Mgvgt) = (N2 X Ra?t)'
It is easy to check that N? is a 2-d k-solution and is hence the round sphere. (|

Theorem 22.34. For (M3, g) an orientable complete Riemannian manifold with sec = 0 and R >
0, then if M is compact it is diffeomorphic to one of S3/T', S? x St or (S? x S')/Zy ~ RP3#RP3.
If M is non-compact, then it is diffeomorphic to S? x R, (5% x R)/Za, R3, T? xR, (T? x R)/Z3 or
St x R2.
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Proof. It suffices to consider the non-compact case. There exists S © M a compact, totally geodesic,
totally convex submanifold, the “soul” of M, so that M ~ v;(5), where vy is the normal bundle
of S'in M. In particular, secg = 0. The topology of M may be read off from the possibilities for
the soul S

S M

{} R3

ST ST x R2

S? SZxR
RP? (57 x R)/Z2

T2 [T2 xR, (T2 x R)/Zs.

This finishes the proof. (|

Theorem 22.35. If (M3,(g;);) is an orientable k-x-soliton, then the possibilities S* x S' and
(82 x SY)/Zy in the previous theorem do not occur.

Proof. Let (M, (§;);) denote the universal cover. It is a s-#-soliton. Let w : M — M denote the
covering map. By assumption, M ~ S? x R. Then, the strong maximum principle implies that
(M, §) is isometric to a shrinking cylinder. In particular, (M, (g;);) is isometric to (S? x R)/T.
This is not x-noncollapsed. g

Definition 22.36. For (M3, g) a Riemannian manifold, U = M and € > 0, U is called an e-neck
if there is A > 0 and diffeomorphism ® : S? x (—1,1) - U, so that

€’ e

*
H)\¢ 9~ 9s2x _%7%)”Cl%1(s2x(—l,l)) <€

A point x € U is called a center of U if z € ®(S? x {0}) for such a ®.
Another way to define this is as follows: if ¢, — 0, then (My, gk, x) is a sequence of ex-necks

with z, the center of the neck if and only if (M, Akgk, Tk) SN (S?2 xR, gs2 g, Top) for some A > 0.
Definition 22.37. For (M3, (g;)¢) a k-#-soliton and ¢ > 0, we define

M, :={x € M : x a center of an e-neck at ¢t = 0}.
Theorem 22.38. For (M3, (g;):) a k-+-soliton. Then M\M, is a bounded set.

Proof. Assume not. Then, there is xp € M\M, with z; — 00. Then, there is a minimizing ray
0 :[0,00) = M and s — o0 so that distg(xo, ) = dist(xg, o(sk)), Lrorko(sg) — m, and

distg(xo, x ) R(z0,0) — 0.
Bounded curvature at bounded distance implies that

diSto(x(), :vk)2R(xk, 0) — 00.

This implies that (M, R(xk,0)(9r-1(zy,0)¢)t> Tk) <, (Mo, (9f°)t, w0 ), which contains a line, and is
hence isometric to §? x R. O

Corollary 22.39. For (M3, (g;):) a non-compact orientable k-+-soliton, then if M is not isometric
to S? x R or (S? x R)/Zs, then M ~ R3 and M = AUB where A is compact and diffeomorphic to
a ball, and B < M, is diffeomorphic to S* x R.
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