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Improved generic regularity of minimizing hypersurfaces
CHRISTOS MANTOULIDIS
(joint work with Otis Chodosh, Felix Schulze)

Let T be a smooth, closed, oriented, (n — 1)-dimensional submanifold of R"**.
Among all smooth, compact, oriented hypersurfaces M C R™t! with OM =T,
does there exist one with least area?

Foundational results in geometric measure theory can be used to produce an in-
tegral n-current T with least mass (“minimizing”) among all those with boundary
equal to the multiplicity-one current represented by I'. When n+1 < 7, it is known
that T is supported on a smooth, compact, oriented hypersurface that solves the
original differential geometric problem (see [1, 2, 3, 4, 5]). When n+1 > 8, smooth
minimizers can fail to exist (see [6]) but it is nevertheless known that away from
a compact set singT C R"™! \ T' of Hausdorff dimension < n — 7, the support of
T will be a smooth precompact hypersurface with boundary I' (see [7, 5]).

A fundamental result of Hardt—Simon [8] shows that the singularities of 7-
dimensional minimizing currents in R®, which are necessarily isolated points, can
be eliminated by a perturbation of the prescribed boundary I', thus yielding solu-
tions to the original geometric problem in R® for the perturbed boundary.

In recent work motivated from our past results on mean curvature flow (see,
e.g., [9, 10]) we obtained a generic regularity result for minimizers in higher am-
bient dimensions:
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Theorem ([11], [12]). Let I"~' € R"*! be a smooth, closed, oriented, submani-

fold. There exist arbitrarily small perturbations I of T such that every minimizing

integral n-current with boundary [I'] is of the form [M'] for a smooth, precompact,

oriented hypersurface M’ with OM’ =T’ and sing M’ = M’ \ M' satisfies
singM' =0 if n +1 < 10, otherwise dimgsingM' <n—9—¢,

where g, € (0,1] is an explicit dimensional constant.

Let us discuss what goes into the proof of this theorem. Let us denote
M(T") = {minimizing integral n-currents in R"** with boundary [I']}.
We agree to the following simplifying assumptions (see [12] for the general case):
e ' is connected.
e M(T) is a singleton.
The above and the standard regularity theory guarantee that M(T') = {[M]} for
a smooth, precompact, oriented hypersurface M C R"*! with OM =T, sing M =
M\ M cc R\ T, and dimy singM <n — 7.

Now set I'g := I' and perturb I' smoothly to (I's)se(—s,5) by s times the unit
normal to M along T" (recall that sing MNI' = @) for some small § > 0. Accordingly,
for each s € (—4,6), let M(T'5) be the set of all minimizers with boundary data
T's; each such is still of the form [M;], with M; enjoying similar a priori regularity
as M. A cut-and-paste argument implies that
€3] [M.] € M(Ty), [My] € M(Ty), s # s = M,N My =0.

Define B
L = Uge(—s,6) U jem(rs) Ms,
S = Use(—s,6) Ym.Jem(r,) sing M.
In view of (), the following “timestamp” function is well-defined:
t: L —(—0,0),
t(z) = s for all x € My, [M,] € M(Ty), s € (—6,6).

We are now ready to state the two main tools required for our main theorem.
Tool A ([12]). It holds that dimpy S <n — 7.

Tool B ([12]). The timestamp function t : L — (—0,8) above is a-Héolder on S
for every a € (0,2 + €,,), where e, € (0,1] is an explicit dimensional constant.

To obtain the Theorem from Tools A, B one can invoke a Sard-type covering
argument of Figalli-Ros-Oton—Serra, who successfully proved a generic regularity
result for free boundary singularities in the obstacle problem using tools similar
to A, B.

Proposition ([13, Proposition 7.7]). Let S CR™, 0 < d <mn, and 0 < 8 < a.
Assume that H(S) < oo and that f: S — (—1,1) is a-Hélder continuous.

(1) If d < B, then HYP(f(S)) = 0.

(2) If d > B3, then for a.e. t € (—1,1) we have HI=P(f~1(t)) = 0.
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Diameter estimates in Kahler geometry
BiN Guo
(joint work with Duong H. Phong, Jian Song, and Jacob Sturm)

The diameter is an important geometric invariant associated to a Riemannian met-
ric. Bounds for the diameter are essential for the study of geometric convergence of
a family of Riemannian manifolds. Previously known results require the conditions
on the curvature. For example, the Myers’ theorem states that the diameter is
bounded if the Ricci curvature is bounded below by a positive constant. Recently,
in [1] we develop a general theory of diameter estimates for Kahler metrics, which
in particular does not require any assumptions on the Ricci curvature. The non-
linear analysis of complex Monge-Ampere equations allows us to derive uniform
estimates of the Green’s functions [2], from which the diameter estimates follow.

Let (X,wx) be an n-dimensional compact Kéhler manifold equipped with a
Kéhler metric wx. Let v be a non-negative continuous function and A, B, K > 0,
p > n be given parameters. We define a subset of W := W(X,wx,n, A, p, K,7v) of
the space of Kéhler metrics on X by

n

W {us (718 2 0. o] o] < A4, Ny ale) < K

n =

X



