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We use Seymour’s classification [8] of regular matroids to compute sharp upper
bounds for g∗(M,λ) for all weighted regular matroids of rank less than or equal
to nine which only depend on the rank of M .

For ranks less than or equal to six these bounds easily follow from known results
[1]. However for ranks between seven and nine our bounds seem to be new. The
important estimates which make the proof of Theorem 3 possible are g∗(M,λ) ≤ 1

3

for weighted, regular matroids (M,λ) of rank six and g∗(M,λ) ≤ 1
4 for weighted,

regular matroids (M,λ) of rank nine.
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Decomposing 4-manifolds with positive scalar curvature

Christos Mantoulidis

(joint work with Richard H. Bamler, Chao Li)

Recall the following well-known theorem of Schoen–Yau ([8]) and Gromov–Lawson
([3]) that exhibits the richness of the class of manifolds that can carry Riemannian
metrics with positive scalar curvature. For convenience and brevity, we will adopt
the convention of writing “PSC” for “positive scalar curvature,” and will call a
manifold “topologically PSC” if it can carry PSC Riemannian metrics.

Theorem. Let M be a topologically PSC n-manifold with n ≥ 3. Any manifold
obtained from M by performing a sequence of 0-, 1-, ..., and/or (n− 3)-surgeries
is also topologically PSC.

The theorem above naturally leads one to ask:

Question. Can all topologically PSC n-manifolds be built out of “simple” topo-
logically PSC n-manifolds by performing codimension ≥ 3 surgeries?

Our understanding of 3-manifold topology yields a conclusive answer when n =
3. The following theorem follows from the combined work of Schoen–Yau ([8, 9]),
Gromov–Lawson ([2]), and Perelman ([5, 6, 7]):
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Theorem. Every closed, oriented, topologically PSC 3-manifold can be obtained
by performing 0-surgeries on a disjoint union of spherical space forms (i.e., S3/Γ’s,
where the Γ’s are finite subgroups of SO(4) acting freely on S3).

The following new result was presented, obtained by the speaker, R. H. Bamler,
and C. Li:

Main Theorem ([1]). Every closed, oriented, topologically PSC 4-manifold M
can be obtained from a possibly disconnected, closed, oriented, topologically PSC
4-orbifold M ′ with isolated singularities such that b1(M

′) = 0 and b2(M
′) ≤ b2(M)

by performing 0- and 1-surgeries. All 1-surgeries are standard manifold ones, but
0-surgeries may occur at orbifold points.

Recall that the jth Betti number bj(M
′) of the orbifold M ′ is defined to be the

jth Betti number ofM ′ viewed as a topological space; in our case, this is equivalent
to the jth Betti number of the regular part M ′

reg ⊂ M ′. In the connected case,
b1(M

′) is the same as the rank of the abelianization of the orbifold fundamental
group πorb

1 (M ′). Finally, a 0-surgery occurring at two orbifold points both modeled
onR4/Γ means that the corresponding connected sum operation is performed with
a S3/Γ neck.

Our proof of the Main Theorem relies on the flexibility of two-sided stable
minimal hypersurfaces in PSC 4-manifolds manifolds due to the speaker and C. Li
([4]). Specifically, the following metric preparation lemma was necessary:

Metric Preparation Lemma. Let Σ be a two-sided, closed, embedded, stable,
minimal hypersurface inside an oriented PSC 4-manifold (M, g). Then:

(a) Σ must be topologically PSC and thus obtained by performing 0-surgeries
on a disjoint union of spherical space forms.

(b) Given any auxiliary PSC metric σ on Σ, there exists a new PSC metric g̃
on M , which:

• is isometric to a product cylinder (Σ, σ) × (−2, 2) in the distance-2
tubular neighborhood of Σ, and

• coincides with g outside a larger tubular neighborhood of Σ.

Let now us outline the proof of the Main Theorem. Endow M with an arbitrary
PSC metric. We “exhaust” the codimension-1 homology of M with a two-sided,
stable minimal hypersurface Σ. By a now-standard argument of Schoen–Yau, the
metric induced on Σ is conformal to a PSC metric. Thus, Σ is topologically the
result of 0-surgeries on spherical space forms. With the help of the aforementioned
flexibility theory, we locally modify the metric onM to another PSC metric that is
locally a product near Σ and induces a “model” PSC metric on Σ. If Σ is merely
the disjoint union of spherical space forms S3/Γ, with no 0-surgeries, then our
model metrics are all round and simple 3-surgeries on M along the components of
Σ yield a 4-orbifold whose b2 is unchanged and b1 is trivial (assuming Σ suitably
“exhausted” the codimension-1 homology of M). If Σ does involve 0-surgeries, we
first undo these using 2-surgeries on M near Σ’s 0-surgery neck regions; this may
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decrease b2. We have only performed 3- and 2-surgeries onM to get to the orbifold,
so M can be obtained from the orbifold via 0- and 1-surgeries, respectively.

We conclude our introduction by posing the following:

Question. Let M be a closed, oriented, topologically PSC 4-manifold. Can one
obtain M from a closed, oriented, topologically PSC 4-orbifold M ′ with isolated
singularities and the property that each component has finite orbifold fundamental
group πorb

1 (M ′) by performing 0- and 1-surgeries?
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Fundamental Gap Estimate for Convex Domains

Guofang Wei

The fundamental (or mass) gap refers to the difference between the first two eigen-
values of the Laplacian or more generally for Schrödinger operators. It is a very in-
teresting quantity both in mathematics and physics as the eigenvalues are possible
allowed energy values in quantum physics. Naturally one looks for optimal upper
and lower estimates for the gap. For convex domains with Neumann boundary
condition, this is well studied and optimal lower bound has been obtained awhile
back. Here we concentrate on the Dirichlet boundary condition.

In their celebrated work, B. Andrews and J. Clutterbuck [1] proved the funda-
mental gap conjecture that difference of first two eigenvalues of the Laplacian with
Dirichlet boundary condition on convex domain with diameter D in the Euclidean
space is greater than or equal to 3π2/D2. In several joint works with X. Dai,
Z. He, S. Seto, L. Wang (in various subsets) [7, 4, 3] the estimate is generalized,
showing the same lower bound holds for convex domains in the unit sphere. The
key is to prove super log-concavity of the first eigenfunction.


