
60 Oberwolfach Report 30/2021

Metrics with λ1(−∆ + kR) ≥ 0 and flexibility in the Riemannian
Penrose Inequality

Christos Mantoulidis

(joint work with Chao Li)

In all that follows, M denotes a closed n-dimensional manifold and Met(M) de-
notes the space of smooth Riemannian metrics on M . For k ∈ (0,∞), we define

M≥0
k (M) := {g ∈ Met(M) : λ1(−∆g + kRg) ≥ 0},

where λ1(−∆g + kRg) is the first eigenvalue of the operator −∆g + kRg on M ,
and Rg is the scalar curvature of g. We also define

M≥0
∞ (M) := {g ∈ Met(M) : Rg ≥ 0}.

Finally, we define M>0
k (M), k ∈ (0,∞], as above with all “≥” replaced by “>.”

Note that, for 0 < k < k′ ≤ ∞,

M>0
k′ (M) ⊂ M≥0

k′ (M)
∩ ∩

M>0
k (M) ⊂ M≥0

k (M).

These spaces are not generally encountered in the literature in this level of gen-
erality, so some remarks are in order about their actual geometric significance.
This is discussed extensively in our paper [10]. For the purpose of this brief re-
port, we simply highlight that for k = 1

2 these spaces encode apparent horizons in
time-symmetric initial data sets to Einstein’s equations with the dominant energy
condition, and that M>0

k (M) 6= ∅ for k = n−1
4(n−2) if n ≥ 3 and M is topologically

PSC (i.e., its Yamabe constant is positive).
Our starting point was a generalization of a theorem of Codá Marques [12], who

proved that the ultimate space in the filtration has a connected moduli space, i.e.,

M>0
∞ (M)/Diff+(M) is path-connected,

when M is a closed orientable 3-manifold. We proved:

Theorem 1. Let M be a closed orientable topologically PSC 3-manifold. Then,

M>0
k (M)/Diff+(M), M≥0

k (M)/Diff+(M) are path-connected for all k ∈ [ 14 ,∞].

To prove Theorem 1 we needed a suitable generalization of the Gromov–Lawson
surgery process [8] (cf. Schoen–Yau’s [13]) from M>0

∞ (M) to M>0
k (M). Such a

surgery was first carried out by Bär–Dahl in [3, Theorem 3.1], and we give a full
independent proof of it with some added details in an appendix to our paper.

The recent breakthrough of Bamler–Kleiner [4] on the path-connectedness of
M>0

∞ (M) implies the following two companion results when used in conjunction
with Theorem 1 and, separately, the conformal method:

Theorem 2. Let M be a closed orientable topologically PSC 3-manifold. Then,

M>0
k (M) and M≥0

k (M) are path-connected for all k ∈ [ 14 ,∞].
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Theorem 3. Let M be a closed orientable topologically PSC 3-manifold. Then,
M>0

1/8(M) is contractible and M≥0
1/8(M) is weakly contractible.

Our main application of these results is to the computation of the Bartnik mass
of apparent horizons, and its generalization due to Bray. For n-dimensional closed
orientable (Mn, g), the apparent horizon Bartnik mass is defined as

mB(M, g,H = 0) = inf{mADM (M,g) : (M,g) ∈ EB(M, g,H = 0)},
where EB(M, g,H = 0) is the set of complete, connected, asymptotically flat
(M,g) with nonnegative scalar curvature, no closed interior minimal hypersur-
faces, and minimal (H = 0) boundary isometric to (M, g). Such (M,g) are initial
data sets for solutions of Einstein’s equations with the dominant energy condi-
tion, and mADM (M,g) is the ADM mass of the initial data set [2, 1]. Using a
rearrangement trick of Schoen–Yau and a delicate splitting theorem of Galloway,
it follows that:

EB(M, g,H = 0) 6= ∅ =⇒ M is topologically PSC, g ∈ M≥0
1/2(M).

Thus, we are precisely in the context studied by Theorems 1, 2, 3.
There exists a nontrivial lower bound for mB(M, g,H = 0) by Bray [6] and

Bray–Lee’s [5] Riemannian Penrose Inequality, which says:

(M,g) ∈ EB(M, g,H = 0) =⇒ mADM (M,g) ≥ 1
2 (σ

−1
n volg(M))(n−1)/n,

when 2 ≤ n ≤ 6 and σn is the volume of the standard round Sn; see also Huisken–
Ilmanen [9] in case n = 2 and M is connected. Thus of course

mB(M, g,H = 0) ≥ 1
2 (σ

−1
n volg(M))(n−1)/n,

We computed the left hand side to be a topological invariant when n = 3 and M
is connected. (When n = 2, this is due to M.–Schoen [11], Chau–Martens [7].)

Theorem 5. For a closed connected topologically PSC 3-manifold M , either:

• EB(M, g,H = 0) = ∅
• EB(M, g,H = 0) 6= ∅ and mB(M, g,H = 0) = cB(M) volg(M)2/3,

for all g ∈ M≥0
1/2(M). Here, cB(M) is a topological constant and cB(S

3) = 1
2σ

−2/3
3 .

Unfortunately, the precise value of the apparent horizon Bartnik mass remains
unknown for:

• disconnected 2- or 3-dimensional M ;
• 3-dimensional M with nontrivial topology;
• all higher dimensional M , except for certain special metrics on M = SSn.

While we do not have satisfactory answers for the Bartnik mass for these bullet
points at this time, we know how to compute a relaxation of Bartnik’s mass due to
Bray [6] in near-complete generality. In this relaxation, the set EBB(M, g,H = 0)
of extensions considered is such that the boundary (M, g) is outer-minimizing
minimal, rather than outermost minimal. The Bartnik–Bray mass mBB(M, g,H =
0) is then defined analogously. We showed:
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Theorem 6. Let M be a closed orientable topologically PSC n-manifold with
2 ≤ n ≤ 6. Consider the subset of M≥0

1/2(M) given by:

LinClos[M>0
1/2(M)] := {g ∈ M≥0

1/2(M) : there exists a C1 path

[0, 1) ∋ t 7→ g(t) with g(0) = g and
[
d
dtλ1(−∆g(t) +

1
2Rg(t))

]
t=0

> 0}.

If g ∈ LinClos[M>0
1/2(M)] and EBB(M, g,H = 0) 6= ∅, then

mBB(M, g,H = 0) = 1
2 (σ

−1
n volg(M))(n−1)/n.

We emphasize that M need not be connected and that our computation is valid
as long as a single Bartnik–Bray extension exists. Note that it is known that

M≥0
1/2(M) \ LinClos[M>0

1/2(M)] ⊂ {g ∈ Met(M) : Ricg ≡ 0},
which is empty when n = 2, 3, and small for larger n.
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