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Metrics with A1 (—A 4 kR) > 0 and flexibility in the Riemannian
Penrose Inequality
CHRISTOS MANTOULIDIS
(joint work with Chao Li)

In all that follows, M denotes a closed n-dimensional manifold and Met(M) de-
notes the space of smooth Riemannian metrics on M. For k € (0, 00), we define

MZO (M) = {g € Met(M) : \i(—A, + kRy) > 0},

where A\ (—Ay + kRy) is the first eigenvalue of the operator —A, + kR, on M,
and R, is the scalar curvature of g. We also define

MZO(M) :={g € Met(M) : R, > 0}.

Finally, we define M;°(M), k € (0, 00|, as above with all “>” replaced by “>.”
Note that, for 0 < k < k¥’ < o0,

MZOM) C M (M)
N N
MZOM) < MZP(M).

These spaces are not generally encountered in the literature in this level of gen-
erality, so some remarks are in order about their actual geometric significance.
This is discussed extensively in our paper [10]. For the purpose of this brief re-
port, we simply highlight that for k = % these spaces encode apparent horizons in
time-symmetric initial data sets to Einstein’s equations with the dominant energy
condition, and that M7%(M) # 0 for k = 4(’;7*_12) if n > 3 and M is topologically
PSC (i.e., its Yamabe constant is positive).

Our starting point was a generalization of a theorem of Codd Marques [12], who
proved that the ultimate space in the filtration has a connected moduli space, i.e.,

MZO(M)/ Diff, (M) is path-connected,
when M is a closed orientable 3-manifold. We proved:

Theorem 1. Let M be a closed orientable topologically PSC 3-manifold. Then,
MO (M)/ Diff 4 (M), M%O(M)/Difer(M) are path-connected for all k € [i, o).

To prove Theorem 1 we needed a suitable generalization of the Gromov—Lawson
surgery process [8] (cf. Schoen—Yau’s [13]) from MZO(M) to M7°(M). Such a
surgery was first carried out by Bar-Dahl in [3, Theorem 3.1], and we give a full
independent proof of it with some added details in an appendix to our paper.

The recent breakthrough of Bamler—Kleiner [4] on the path-connectedness of
MZO(M) implies the following two companion results when used in conjunction
with Theorem 1 and, separately, the conformal method:

Theorem 2. Let M be a closed orientable topologically PSC 3-manifold. Then,
MO (M) and M%O(M) are path-connected for all k € [i, o).
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Theorem 3. Let M be a closed orientable topologically PSC 3-manifold. Then,
/\/11>/OS(M) is contractible and M12/08(M) is weakly contractible.

Our main application of these results is to the computation of the Bartnik mass
of apparent horizons, and its generalization due to Bray. For n-dimensional closed
orientable (M™, g), the apparent horizon Bartnik mass is defined as

mp(M,g,H=0)=inf{mapy(M,g): (M,g) € Eg(M,g9,H =0)},

where Eg(M,g, H = 0) is the set of complete, connected, asymptotically flat
(M, g) with nonnegative scalar curvature, no closed interior minimal hypersur-
faces, and minimal (H = 0) boundary isometric to (M, g). Such (M, g) are initial
data sets for solutions of Einstein’s equations with the dominant energy condi-
tion, and mapy (M, g) is the ADM mass of the initial data set [2, 1]. Using a
rearrangement trick of Schoen—Yau and a delicate splitting theorem of Galloway,
it follows that:

Ep(M,g,H =0) #( = M is topologically PSC, g € Mlz/OQ(M).

Thus, we are precisely in the context studied by Theorems 1, 2, 3.
There exists a nontrivial lower bound for mg(M,g, H = 0) by Bray [6] and
Bray-Lee’s [5] Riemannian Penrose Inequality, which says:

(M, g) € E5(M, g, H=10) = mapy(M,g) > (0, voly(M))"~1/,

when 2 < n < 6 and o, is the volume of the standard round S™; see also Huisken—
IImanen [9] in case n = 2 and M is connected. Thus of course

mp(M, g, H = 0) > (o, vol,(M))"=D/m

We computed the left hand side to be a topological invariant when n = 3 and M
is connected. (When n = 2, this is due to M.—Schoen [11], Chau-Martens [7].)

Theorem 5. For a closed connected topologically PSC' 3-manifold M, either:
i gB(Maga-H: 0) =0
e Ep(M,g,H =0) # 0 and mp(M, g, H = 0) = c¢g(M) vol,(M)?/3,
1 _—2/3

forall g € /\/llz/%(M). Here, cg(M) is a topological constant and ¢5(S?) = 307

Unfortunately, the precise value of the apparent horizon Bartnik mass remains
unknown for:

e disconnected 2- or 3-dimensional M
e 3-dimensional M with nontrivial topology;
e all higher dimensional M, except for certain special metrics on M = SS™.

While we do not have satisfactory answers for the Bartnik mass for these bullet
points at this time, we know how to compute a relaxation of Bartnik’s mass due to
Bray [6] in near-complete generality. In this relaxation, the set Egp(M, g, H = 0)
of extensions considered is such that the boundary (M, g) is outer-minimizing
minimal, rather than outermost minimal. The Bartnik—Bray mass mpp (M, g, H =
0) is then defined analogously. We showed:
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Theorem 6. Let M be a closed orientable topologically PSC n-manifold with
2 <n < 6. Consider the subset of Mlz/OQ(M) given by:

LmClos[/\/ll/Q( ) ={g € M1/2( ) : there exists a C* path
[0,1) 5t g(t) with g(0) =g and
[0 (=Ag0) + 5Rem)] g > OF
Ifge LmClos[Ml/z( )| and Egp(M, g, H = 0) # 0, then

mpp(M, g, H = 0) = 3(0;," voly (M)~ D/™,

We emphasize that M need not be connected and that our computation is valid
as long as a single Bartnik—Bray extension exists. Note that it is known that

M1/2( ) \LmClos[Ml/z( )] € {g € Met(M) : Ricy, = 0},

which is empty when n = 2, 3, and small for larger n.
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