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The p-widths of a surface

Christos Mantoulidis

(joint work with Otis Chodosh)

Fix a closed Riemannian manifold (Mn+1, g). The p-widths of (M, g), denoted
ωp(M, g) ∈ (0,∞) for p ∈ N∗, are a geometric nonlinear analogue of the spectrum
of its Laplace–Beltrami operator. They are obtained by replacing the Rayleigh
quotient of the Laplace–Beltrami operator along families of scalar-valued func-
tions on M with the n-dimensional area along sweepouts of M of (possibly sin-
gular) hypersurfaces. They were introduced by Gromov [Gro88, Gro03, Gro09],
studied further by Guth [Gut09], and have played a central and exciting role in
minimal surface theory when combined with the Almgren–Pitts–Marques–Neves
Morse theory program for the area functional. We invite the reader to refer to
[Gro88] for the analogy between the Laplace spectrum and the volume spectrum,
and to [MN21] for a thorough overview of the importance of this analogy in mini-
mal surface theory.

Let us recall the main existence theorem for p-widths. By the combined work
of Almgren–Pitts, Schoen–Simon, Marques–Neves, and Li, it is known that in am-
bient dimensions n + 1 ≥ 3 every p-width is attained as the area of a smoothly
embedded minimal hypersurface Σp whose singular set Σ̄p \ Σp has dimension
≤ n− 7, whose connected components may contribute to area with different mul-
tiplicities, and whose total Morse index (discounting multiplicities) is bounded by
p. That is:

Theorem 1 ([Pit81, SS81, MN16, Li20]). Let (Mn+1, g) be a closed Riemannian
manifold with n + 1 ≥ 3. For every p ∈ N∗, there exists a smoothly embedded
minimal hypersurface Σp ⊂M , with Σ̄p \Σp of Hausdorff dimension ≤ n− 7 and
components Σp,1, . . . ,Σp,N(p) ⊂ Σp, such that

ωp(M, g) =

N(p)
∑

j=1

mj · areag(Σp,j),

where mj ∈ N∗ for all j ∈ {1, . . . , N(p)} and ind(Σp) ≤ p.

Note that, when 3 ≤ n+ 1 ≤ 7, Σp is necessarily smoothly embedded. On the
other hand, in the case of a two-dimensional Riemannian manifold (n + 1 = 2),
min-max methods not only need not produce embedded geodesics (see [Aie19] for
examples of immersed geodesics being produced), but in full generality they could
a priori produce geodesic nets as opposed to (immersed) geodesics (see [MN16,
Remark 1.1]).

Our first main result shows that the min-max methods described above can be
guaranteed to produce (immersed) geodesics regardless of the number of param-
eters. Throughout the paper, a geodesic is said to be primitive if it is connected
and traversed with multiplicity one.
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Theorem 2. Let (M2, g) be a closed Riemannian manifold. For every p ∈ N
∗,

there exists a σp ⊂M consisting of primitive closed geodesics σp,1, . . . , σp,N(p) ⊂ σp
such that

ωp(M, g) =

N(p)
∑

j=1

mj · lengthg(σp,j),

where mj ∈ N∗ for all j ∈ {1, . . . , N(p)}.

The existence of immersed geodesics representing the p-widths was previously
known for p = 1 by Calabi–Cao [CC92] and for p ∈ {1, . . . , 8} and nearly round
metrics on S2 by Aiex [Aie19].

Our second main result is a computation of the full p-width spectrum of the
round two-sphere. (To this point there had not been a single (Mn, g), n ≥ 2, for
which the areas ωp(M, g) (let alone the surfaces Σp) are known for all p ∈ N∗, not
even in the two-dimensional case. For comparison, the spectrum of the Laplacian
is completely determined for a large class of Riemannian manifolds.)

Theorem 3. Let g0 denote the unit round metric on S2. For every p ∈ N∗,

ωp(S
2, g0) = 2π⌊√p⌋,

and is attained by a sweepout constructed out of homogeneous polynomials. The
corresponding σp is a union of ⌊√p⌋ great circles (repetitions allowed).

One application of Theorem 3 concerns Weyl law for the p-widths. Recall that
the Laplacian spectrum (denoted by λp(M, g)) of a closed Riemannian (n + 1)-
manifiold satisfies the celebrated Weyl law

lim
p→∞

λp(M, g)p−
2

n+1 = 4π2 vol(B)−
2

n+1 vol(M, g)−
2

n+1

showing that the high-frequency behavior of the spectrum is universal in a certain
sense. Liokumovich–Marques–Neves have recently proven [LMN18] that the p-
widths satisfy the following Weyl-type law

(1) lim
p→∞

ωp(M, g)p−
1

n+1 = a(n) vol(M, g)
n

n+1

for some constant a(n) > 0. This result has had important implications for exis-
tence of minimal hypersurfaces, cf. [IMN18]. However, the constant a(n) has not
been determined for any dimension n (see [LMN18, §1.5]). This is in contrast with
the classical Weyl law, where one can use e.g. the (explicitly known) spectrum of a
cube to compute the constant in a straightforward manner. Our full computation
of the p-widths of the round two-sphere in Theorem 3 readily implies:

Corollary 4. When n = 1, the constant in (1) satisfies a(1) =
√
π.

This settles the “simplest case” of the first question in [LMN18, §1.5].
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Regularity of anisotropic minimal surfaces

Antonio De Rosa

(joint work with Riccardo Tione)

A celebrated theorem of W. Allard [1] states that, given a rectifiable m-varifold
V in R

N with density greater or equal than 1 and generalized mean curvature
bounded in Lp(‖V ‖) with p > m, then V is regular around x ∈ RN provided x has
density ratio sufficiently close to 1. The proof deeply relies on the monotonicity
formula of the density ratio, which is strictly related to the special symmetries of
the area functional, [2]. Hence, it is a hard and widely open question whether this
result holds for anisotropic energies, [7, Question 1], i.e. assuming an Lp bound
on the anisotropic mean curvature with respect to functionals of the form

ΣΨ(V ) :=

∫

Γ

Ψ(TzΓ)θ(z)dHm(z), where V = (Γ, θ) is a rectifiable m-varifold.

To the best of our knowledge, the only available result is the regularity for codi-
mension one varifolds with bounded generalized Ψ-mean curvature [3], under a
density lower bound assumption.


