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2 NOTES BY DAREN CHENG, CHAO LI, CHRISTOS MANTOULIDIS

These are notes from Rick Schoen’s topics in differential geometry course taught at Stanford
University in the Spring of 2015. We would like to thank Rick Schoen for an excellent class. Please
be aware that it is likely that we have introduced numerous typos and mistakes in our compilation
process, and would appreciate it if these are brought to our attention.

This course will focus on applications of the theory of minimal submanifolds. Topics covered
include the two dimensional mapping problem and its relevance to the study of positive isotropic cur-
vature, minimal hypersurfaces and scalar curvature as well as the more general theory of marginally
outer trapped surfaces (MOTS), and calibrated submanifolds and associated problems.

1. Background on the 2D mapping problem

The basic setup in the 2D mapping problem is:

Question 1.1. Given a map u0 : Σ2 → (Mn, h) from a closed surface to a compact Riemannian
manifold, can we homotope u0 to a map of least area? That is, does there exist u : Σ → M such
that Area(u) = inf{Area(v) : v ∼ u0}?

Recall that if u is sufficiently differentiable then by the area formula we have

Area(u) =

ˆ
Σ
‖ux1 ∧ ux2‖ dx1 dx2

where
‖ux1 ∧ ux2‖ =

√
‖ux1‖2‖ux2‖2 − 〈ux1 , ux2〉2.

One drawback of working with the area functional is its diffeomorphism invariance, i.e. Area(u) =
Area(u ◦F ) for all F ∈ Diff(Σ2), which makes it behave poorly from an analytic point of view. For
example even if we’re minimizing area, we cannot expect to get good regularity in the limit unless
we take care to choose good parametrizations. In two dimensions one way to overcome this is to
introduce the ”energy functional.”

Definition 1.2. The energy function of a C1 map u : (Σ, g)→ (M,h) is defined to be

(1.1) E(u) =

ˆ
Σ
‖du‖2dVg.

From Cauchy-Schwarz we have

‖ux1 ∧ ux2‖ ≤
1

2

(
‖ux1‖2 + ‖ux2‖2

)
=

1

2
‖du‖2,

(assuming we’re working at the center point of an exponential chart) with equality happen if and
only if

ux1 ⊥ ux2 , ‖ux1‖ = ‖ux2‖.
In other words, for every C1 map u : (Σ, g)→ (M,h) we always have the area bounded by half

of the energy, with equality only if u is wealky conformal.

Definition 1.3. We call a map u : (Σ, g) → (M,h) harmonic if u is a critical point of the energy
functional.

When u is simultaneously harmonic and conformal, then any variation {ut} produces two curves
depending on the variation: one is the half of its energy, the other is its area. We know u0 is critical
point for energy, then the first curve has vanishing slope at t = 0, which forces the second curve,
always lying below the first curve, to have vanishing slope at t = 0. That means u0 is also a critical
point for area functional. In conclusion, we observed the following

Fact 1.4. If u0 is harmonic and conformal, it’s also a critical point for the area functional.

This observation allows us to study conformal harmonic maps instead of minimizers for area
functional. Now we regard energy E as a functional on both the map u and the metric g.
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Proposition 1.5. The energy functional E(u, g) =
´

Σ ‖du‖
2
gdVg has the following properties:

(1) Conformal invariance: E(u, e2λg) = E(u, g). This is so because

E(u, g) =

ˆ
gij〈uxi , uxj 〉h

√
det gdx1dx2

and a conformal change of the metric g transforms gij and
√

det g inversely.
(2) Diffeomophism invariance: For any diffeomorphism F : Σ→ Σ, E(u ◦ F, F ∗g) = E(u, g).

1.1. Hopf differential. Assume u : (Σ, g)→ (M,h) is harmonic, X is a vector field on Σ and Ft
is the flow generated by X. By diffeomorphism invariance, we have, for small t,

E(u ◦ Ft, F ∗t g) = E(u, g).

Take the differential both sides at t = 0. Since u is critical point of energy functional, the differential
in the u component is 0. Therefore

0 =
d

dt

∣∣∣∣
t=0

E(u ◦ Ft, F ∗t g) = 0 +
d

dt

∣∣∣∣
t=0

E(u, F ∗t g).

In local coordinates this is

0 =
d

dt

∣∣∣∣
t=0

ˆ
Σ
gijt 〈uxi , uxj 〉

√
det gtdx.

Now ġ = LXg = ∇iXj +∇jXi, so above gives

0 =

ˆ
{−(Xi,j +Xj,i)〈uxi , uxj 〉

√
det g + gij〈uxi , uxj 〉(divX)

√
det g}dx.

Definition 1.6. We define the (stress-energy) tensor to be

Tij = 〈uxi , uxj 〉 −
1

2
‖du‖2gij .

Then the computation above implies

0 = 2

ˆ
Σ
〈Xi,j , Tij〉dx, ∀X.

Therefore we conclude
∇jTij = 0, i = 1, 2.

And by definition trg(T ) = 0. So the (stress-energy) tensor T is a transverse traceless tensor.

In local coordinates normal at one point, we can write T as a two-by-two matrix:

(Tij) =

(
1
2(‖ux1‖2 − ‖ux2‖2) 〈ux1 , ux2〉

〈ux1 , ux2〉 −1
2(‖ux1‖2 − ‖ux2‖2)

)
.

This reveals the interplay between T and the so called Hopf differential on a surface. Write
g = λ2|dz|2, where z = x1 +

√
−1x2 is a local holomorphic coordinate. We define Hopf differential

to be φ = 〈uz, uz〉hdz2. It’s straightforward to check

T is transverse traceless ⇔ φ is holomorphic

and
T = 0⇔ φ = 0

Note also that T = 0 means u is weakly conformal. So from above we conclude the following

Theorem 1.7. The map u is minimal for the area functional if and only if E(u, g) is a critical
point jointly in (u, g), where (u, g) takes values in W 1,2(Σ,M) × Tr, where Tr is the Teichmüller
space of genus r.
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1.2. General existence theorem. Now we state the general existence theorem of a minimal map.
This is a major analytic tool we use in this course. We’ll omit most of the proof due to analytic
complexity. Instead, we’ll focus on geometric applications.

Theorem 1.8. Given u0 : Σ → (M,h), denote A0 = inf{A(v) : v homotopic to u0}. There exist
Σ1, . . . ,Σk and least area maps ui : Σi → (M,h) such that:

(1)
∑k

i=1 genus(Σi) ≤ genus(Σ).

(2) A0 =
∑k

i=1A(ui).

In general, when trying to take a converging sequence of maps whose area tends to A0, two
types of singularities may occur: neck-pinches and bubbles. Each neck-pinch degenerates to a 1-
dimensional segment between two parts of surfaces, and bubbles happen when area accumulates at
one point. The following picture is an illustration of this phenomenon.

Bubble

Neck-pinch

Figure 1. Illustration of limit (Σ, u) attaining minimal area. Each bubble is blown
up into a sphere, each neck-pinch degenerates to a segment.

However, under some conditions these two types of singularities will not happen. In fact, we
have

Corollary 1.9. If u0 is incompressible on simple closed curves then one of Σi is Σ and all others
are genus 0. If further π2(M) = {1} then there exists u homotopic to u0 attaining the least area
A0 (i.e., there is no bubbling).

Here incompressibility on simple closed curves means: for any nontrivial simple closed curve α
in π1(Σ), u0(α) is nontrivial in π1(M).

In most cases harmonic maps are not necessarily conformal, hence not necessarily critical for
area functional. However in the case that Σ is the 2-sphere:

Theorem 1.10. If u : (S2, gS)→ (M,h) is harmonic, where gS is the standard metric on S2, then
u is also conformal, hence minimal.

Proof. By previous section the Hopf differential φ(z)dz2 is holomorphic on S2. That is, φ(z)dz2

is an entire differential on C and extends to ∞. Take ζ = 1/z, then near ∞ the Hopf differential
is φ(1/ζ)/ζ4dζ2. Near ζ = 0, φ(1/ζ)/ζ4 is holomorphic. So φ(z)z4 is an entire function near ∞.
Hence |φ| is bounded by C/|z|4 for every z. By maximum principle we conclude φ ≡ 0. �

Next theorem will be our primary tool for our use.

Theorem 1.11 (Sacks-Uhlenbeck [SU81], Micallef-Moore [MM88]). If πk(M) 6= {1} then there
exists nonconstant harmonic map u : S2 →M and the Morse index of u ≤ k − 2.

Remark 1.12. The Morse index is taken with respect to the second variation of the energy
functional. In this specific case, the Jacobi operator is: for V ∈ Γ(u∗TM),

LV = ∆V +

2∑
i=1

RM (u∗(ei), V )u∗(ei), e1, e2 form an orthonormal basis on Σ.
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Remark 1.13. Sacks-Uhlenbeck’s approach can be (very briefly) sketched as following. For α ≥ 1,
define

Eα(u) =

ˆ
S2

(
1 + ‖du‖2

)α
da.

For α > 1, this is a ”good” variational problem and they are able to extract converging subsequences
of critical points of Eα.

Micallef-Moore further modify Eα to make its critical points non-degenerate, and they proved
the modified critical points also converge after passing to a subsequence.

Remark 1.14. We here point out that Colding and Minicozzi have a different approach for mini-
mizers on S2, and X. Zhou generalized the result to higher genus surfaces.

2. Minimal submanifolds and Bernstein theorem

2.1. First variation of area functional. Let Σk ⊂ Mn be a submanifold. Denote by D the
Levi-Civita connection on M and by h the vector valued second fundamental form

h(X,Y ) = (DXY )⊥, X, Y ∈ Γ(TM).

The vector

~H =
k∑
i=1

h(ei, ei)

is the mean curvature, where e1, . . . , ek is an orthonormal basis of tangent vector fields.
Now if X is a vector field on M compactly supported on Σ and Ft is a flow with initial velocity

X, consider Σt = Ft(Σ). The variation of area functional can be calculated as following

δΣ(X) =
d

dt

∣∣∣∣
t=0

|Σt| =
ˆ

Σ
divΣXdµ.

where divΣ(X) =
∑k

i=1〈DeiX, ei〉 and dµ is the volume measure on Σ.

Decompose X into its tangent and normal components X = XT +X⊥, we may write 〈DeiX, ei〉 =
〈DeiX

T , ei〉 + 〈DeiX
⊥, ei〉. And the normal component can be further calculated as 〈DeiX, ei〉 =

−〈X⊥, (Dei , ei)
⊥〉. Therefore

divΣ(X) = divΣ(XT )− 〈X, ~H〉.

And the first variation of area functional is δΣ(X) = −
´

Σ〈X, ~H〉dµ.

Definition 2.1. Call Σk ⊂Mn minimal if ~H ≡ 0.

2.2. Second variation of area functional, Bernstein theorem. In many cases it’s necessary
to consider the second variation of area functional. We have

Proposition 2.2. Assume ~H ≡ 0 and Xp ⊥ TpΣ for every p on Σ, and X is compactly supported
on Σ. Then the second variation of area functional is given by

δ2Σ(X,X) =

ˆ
Σ
‖D⊥X‖2 − ‖〈h,X〉‖2 −

k∑
i=1

RM (ei, X, ei, X),

with e1, . . . , ek being an orthonormal basis on Σ.

Remark 2.3. We split TM = TΣ⊕NΣ. Then the ambient connection D gives rise to connections
on TΣ and NΣ. If Y ∈ Γ(TM) and X ∈ Γ(NM) then we have D⊥YX = (DYX)⊥. Then we
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may rewrite ‖D⊥X‖2 =
∑k

i=1 ‖D⊥eiX‖
2 and ‖〈h,X〉‖2 =

∑
i,j〈hi,j , X〉2 = ‖DTX‖2, and the second

variation is given as

δ2Σ(X,X) =

ˆ
Σ
‖D⊥X‖2 −

k∑
i=1

RM (ei, X, ei, X)− ‖DTX‖2.

Definition 2.4. Define the Jacobi operator L on Γ(NΣ) by

LX = ∆⊥X +
∑

RM (ei, X)ei +
∑
i,j

〈hij , X〉hij .

Then L is a second order self-adjoint operator on Γ(NΣ), and δ2Σ(X,X) = −
´

Σ〈X,LX〉dµ.
We call the number of negative eigenvalues of L the Morse index of Σ. Σ is called stable if the

Morse index is 0, strictly stable if there are also no Jacobi fields.

A famous and important question is to understand the structure of stable minimal surfaces. The
first important theorem is given by S. Berstein.

Theorem 2.5 (S. Berstein [Ber27]). Let Σ2 ⊂ R3 be a minimal surface and given by a graph
x3 = u(x1, x2) defined for all (x1, x2). Then Σ is a plane; i.e., u must be a linear function.

Before proving Bernstein’s theorem, we first state some important properties of minimal graphs
Σ = graph(u) in Rn+1, where u : Ω→ R is a C2 function.

Fact 2.6. Σ is 2-sided. That is, Σ has a unit normal vector field ν.

Fact 2.7. Σ is area minimizing in Ω× R.

The second fact is an easy consequence of calibration theory, which will reappear in later part
of the course. We prove this special case here.

Extend ν to a unit vector field in Ω×R by setting ν(x, y) = ν(x, u(x)). Since ν is parallel in the
xn+1 direction, we conclude from the minimal surface equation that divRn+1 ν = 0. In fact, suppose
e1, . . . , en is an orthonormal basis tangent to Σ, en+1 = ν. Then we have

divRn+1 ν =

n+1∑
i=1

〈Deiν, ei〉.

Now ν is of unit length, so 〈Den+1ν, en+1〉 = 0. Therefore

divRn+1 ν =
n∑
i=1

〈Deiν, ei〉 = −〈 ~H, ν〉 = 0.

The vector field ν gives a calibration in the region Ω× R.

Σ1

Σ

ν

Ω

R

Figure 2. Calibration
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Suppose Σ1 ⊂ Ω×R and ∂Ω1 = ∂Ω. Denote ν1 the outer unit normal vector field on Ω1. Let Ω′

be the signed region in Rn+1 with Σ− Σ1 = ∂Ω′. Then by the divergence theorem,

0 =

ˆ
Ω′

divRn+1 ν =

ˆ
Σ
ν · ν −

ˆ
Σ1

ν · ν1.

So we conclude

|Σ| =
ˆ

Σ
ν · ν =

ˆ
Σ1

ν · ν1 ≤ |Σ1|, by Cauchy-Schwarz.

Fact 2.8. If Σ is an entire minimal graph, then

|Σ ∩BR(0)| ≤ CRn, ∀R ≥ 1

This is an easy consequence of the fact that minimal graphs are area minimizing. Take any
R > 0. Then Σ divides ∂BR(0) = SR(0) into two parts Σ1,Σ2. Since Σ is a minimal graph over
the domain SnR(0) ⊂ Rn, we have

|Σ ∩BR(0)| ≤ min{|Σ1|, |Σ2|} ≤ CRn.

Now we prove Bernstein’s theorem through the following

Theorem 2.9. Assume Σ ⊂ R3 is stable, proper, orientable minimal surface with Euclidean area
growth. That is, |Σ ∩BR(0)| ≤ CR2 for all R ≥ 1. Then Σ is a plane.

Proof. Take a normal vector field ν and let X = ϕν, ϕ ∈ C∞c (Σ). The stability condition gives

0 ≤ δ2Σ(X,X) =

ˆ
‖∇ϕ‖2 − ‖h‖2ϕ2, where h is the scalar second fundamental form.

So we know ˆ
Σ
‖h‖2ϕ2dµ ≤

ˆ
Σ
‖∇ϕ‖2dµ, ∀ϕLipc(Σ).

We use the logarithmic cut-off trick. Denote ρ(x) = |x|, then ρ is a proper function on Σ and
‖∇ρ‖2 ≤ ‖Dρ‖2 = 1. Define

ϕR(ρ) =


1 for ρ ≤ R
logR2/ρ

logR for R ≤ ρ ≤ R2

0 for ρ ≥ R2.

Claim:
´

Σ ‖∇ϕR‖
2 ≤ C(logR)−1.

In fact, we have
ˆ

Σ∩(BR2−BR)
‖∇ϕR‖2 ≤

ˆ
ρ−2

(logR)2
= (logR)−2

ˆ R2

R
r−2

(ˆ
ρ=r

dσ

‖∇ρ‖

)
dr.

The last equality is got by coarea formula. Here again we use coarea formula just for the constant
function 1 on Σ ∩BR(0) to get ˆ

ρ=r

dσ

‖∇ρ‖
=

d

dr
|Σ ∩Br(0)|.

So ˆ
Σ∩(BR2−BR)

‖∇ϕR‖2 ≤ (logR)−2

(
r−2|Σ ∩Br|

∣∣∣∣r=R2

r=R

+ 2

ˆ R3

R
r−3|Σ ∩Br(0)|dr

)
≤ C1(logR)−2 + C2(logR)−1.

Here we used the area growth of Σ.
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Now take R to ∞ we getˆ
Σ∩BR(0)

‖h‖2dµ ≤
ˆ

Σ∩BR2

‖h‖2ϕ2
Rdµ ≤

ˆ
Σ∩(BR2−BR)

‖∇ϕR‖2dµ→ 0.

So h ≡ 0 and Σ is a plane. �

Question 2.10. We are curious about possible generalization of Berstein’s theorem. The following
cases have been of great interest for researchers.

(1) For higher dimensional Σn ⊂ Rn+1 entire minimal graphs, can we conclude that Σ is affine
space? This question has been answered by many authors over many years. The conclusion
is true for n ≤ 7 and false for n ≥ 8.

(2) Can we get a Berstein type theorem when Σn ⊂ Mn+1 where M is a curved manifold? In
some special cases this question can be answered. We’ll get back to this question later.

(3) For Σ2 ⊂ Rn where n ≥ 4, can we get a Bernstein type theorem? We’ll focus on this
direction.

The third question is more complicated than it first appears. The fact is, we can construct
a family of area minimizing surfaces in higher dimensional Euclidean spaces. Let n = 2m and
J : Rn → Rn being a complex structure, meaning J is orthogonal and J2 = −I. For each fixed J
take Σ2 to be a J-holomorphic curve. Then Σ is area minimizing by a similar calibration argument.
In particular, consider

Σ = {(z, w) : w = f(z)},
Here f is a J-holomorphic function. Then Σ is an area-minimizing surface in R4.

3. Bernstein’s theorem in higher codimensions

As mentioned in the previous section, Bernstein’s theorem in its full generality fails in higher
codimensions due to the presence of J-holomorphic curves, defined as follows.

Definition 3.1. Let n = 2m and let J be an orthogonal complex structure on Rn, i.e. an orthogonal
matrix J with J2 = −I. A J-holomorphic curve is a 2-dimensional surface Σ2 ⊆ Rn such that

J(TxΣ) = TxΣ, for all x ∈ Σ.

Proposition 3.2. J-holomorphic curves are area-minimizing among orientable competitors.

Proof. Consider the Kähler form ω, defined by ω(X,Y ) = JX ·Y . Since J is a constant matrix, we
observe that ω is closed. Next we show that ω is a calibrating form that restricts to the area form
precisely on J-invariant 2-planes. To see this, take any oriented 2-plane Π in Rn and let {e1, e2}
be a positive orthonormal basis. By the Schwartz inequality,

|ω(e1, e2)| = |Je1 · e2| ≤ 1.

Moreover, ω(e1, e2) = 1 if and only if Je1 = e2, which is equivalent to the J-invariance of Π.
To conclude the proof, let Σ0 be an oriented surface with ∂Σ0 = ∂Σ, then we can find a region

R with Σ− Σ0 = ∂R. Then we have

0 =

ˆ
R
dω =

ˆ
∂R
ω =

ˆ
Σ
ω −
ˆ

Σ0

ω

= |Σ| −
ˆ

Σ0

ω ≥ |Σ| − |Σ0|

and the proof is complete. �

Since the hypotheses of Bernstein’s theorem certainly doesn’t rule out J-holomorphic curves,
Proposition 3.2 shows that Bernstein’s theorem is generally false in higher codimensions. The best
one could hope for is perhaps the following statement.
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Conjecture 3.3. Let Σ2 ⊆ Rn be a complete stable minimal surface, possibly with some controlled
area growth, then there exists 2k ≤ n and a 2k-plane P ⊆ Rn such that Σ is J-holomorphic in P
for some complex structure J .

It turns out that even this is false in general. Nonetheless, all hope is not lost as there are some
interesting special cases in which Conjecture 3.3 is true. Below we list a few positive results.

(1) When n = 4 and Σ is oriented with area growth suitably bounded, the conjecture is true.
(2) If genus(Σ) = 0 and ˆ

Σ
(−K)da <∞,

then the conjecture is true for all n.
(3) If the ambient space is replaced by Tn, then the conjecture is true for n = 4.

3.1. Complexifying the stability operator. We’ll treat the case (1). A key ingredient in the
proof is a complexified version of the second variation formula. We first set up some notations
before writing down the formula. As before, let (Σ2, g) be an oriented surface in Mn. Around each
point of Σ we can find local isothermal coordinates (x1, x2), i.e.

g = λ2
(
(dx1)2 + (dx2)2

)
, where λ2 =

∣∣∣∣ ∂∂x1

∣∣∣∣2 =

∣∣∣∣ ∂∂x2

∣∣∣∣2
Next we write

(3.1)
∂

∂z
=

1

2

(
∂

∂x1
− i ∂

∂x2

)
;
∂

∂z
=

1

2

(
∂

∂x1
+ i

∂

∂x2

)
Now recall that if Σ is minimal and X ∈ Γ(NΣ), then the second variation is given by

(3.2) δ2Σ(X,X) =

ˆ
Σ
‖D⊥X‖2 −

2∑
j=1

RM (ej , X, ej , X)− ‖DTX‖2da,

where {ej} is any orthonormal frame for TΣ. Now we complexify TΣ and NΣ and extend the
second variation formula to complex vector fields. For X ∈ Γ(NCΣ), we simply write

(3.3) δ2Σ(X,X) =

ˆ
Σ
‖D⊥X‖2 −

2∑
j=1

RM (ej , X, ej , X)− ‖DTX‖2da

Of course now ‖D⊥X‖2 = 〈D⊥X,D⊥X〉 and likewise for ‖DTX‖2. Below we’ll use the operators
(3.1) to rewrite (3.3). More precisely, we have the following formula.

Proposition 3.4. Let Σ2 and Mn be as above and let X ∈ Γ(NCΣ), then

(3.4) δ2Σ(X,X) = 4

ˆ
Σ
‖D⊥∂

∂z

X‖2 −RM (
∂

∂z
,X,

∂

∂z
,X)− ‖DT

∂
∂z

X‖2dx1 ∧ dx2,

Remark 3.5. Notice that the integrand[
‖D⊥∂

∂z

X‖2 −RM (
∂

∂z
,X,

∂

∂z
,X)− ‖DT

∂
∂z

X‖2
]
dx1 ∧ dx2

is conformally invariant. Thus, even though it’s written in terms of coordinates, it makes sense
globally on Σ.

Proof.
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1. We start from (3.3). Introducing isothermal coordinates as above, the area element da
becomes λ2dx1 ∧ dx2. Plugging this into (3.2) and using the orthonormal frame ej =

λ−1 ∂
∂xj

, j = 1, 2, we find that

(3.5) δ2Σ(X,X) =

ˆ
Σ

2∑
j=1

‖D⊥∂
∂xj
X‖2 −

2∑
j=1

RM (
∂

∂xj
, X,

∂

∂xj
, X)−

2∑
j=1

‖DT
∂

∂xj
X‖2dx1 ∧ dx2

2. Next we notice that

‖D⊥∂
∂z

X‖2 + ‖D⊥∂
∂z

X‖2 =
1

4
〈D⊥∂

∂x1
X − iD⊥∂

∂x2
X, D⊥∂

∂x1
X + iD⊥∂

∂x2
X〉

+
1

4
〈D⊥∂

∂x1
X + iD⊥∂

∂x2
X, D⊥∂

∂x1
X − iD⊥∂

∂x2
X〉

=
1

2

(
‖D⊥∂

∂x1
X‖2 + ‖D⊥∂

∂x2
X‖2

)
Likewise, we also have

‖DT
∂
∂z

X‖2 + ‖DT
∂
∂z

X‖2 =
1

2

(
‖DT

∂
∂x1

X‖2 + ‖DT
∂

∂x2
X‖2

)
and

RM (
∂

∂z
,X,

∂

∂z
,X) +RM (

∂

∂z
,X,

∂

∂z
,X)

=
1

2

(
RM (

∂

∂x1
, X,

∂

∂x1
, X) +RM (

∂

∂x2
, X,

∂

∂x2
, X)

)
Plugging these into (3.5), we obtain

δ2Σ(X,X) = 2

ˆ
Σ
‖D⊥∂

∂z

X‖2 + ‖D⊥∂
∂z

X‖2 −RM (
∂

∂z
,X,

∂

∂z
,X)

+RM (
∂

∂z
,X,

∂

∂z
,X)− ‖DT

∂
∂z

X‖2 − ‖DT
∂
∂z

X‖2dx1 ∧ dx2(3.6)

3. Take the term
´

Σ ‖D
⊥
∂
∂z

X‖2dx1 ∧ dx2. We want to integrate by parts to write it in terms of´
Σ ‖D

⊥
∂
∂z

X‖2dx1 ∧ dx2, a curvature term and some other stuff. To do so, we observe

‖D⊥∂
∂z

X‖2 = ‖D ∂
∂z
X‖2 − ‖DT

∂
∂z

X‖2

= 〈D ∂
∂z
X, D ∂

∂z
X〉 − ‖DT

∂
∂z

X‖2

=
∂

∂z
〈D ∂

∂z
X, X〉 − 〈D ∂

∂z
D ∂

∂z
X, X〉 − ‖DT

∂
∂z

X‖2

=
∂

∂z
〈D ∂

∂z
X, X〉 − 〈D ∂

∂z
D ∂

∂z
X, X〉 −RM (

∂

∂z
,
∂

∂z
,X,X)− ‖DT

∂
∂z

X‖2

=
∂

∂z
〈D ∂

∂z
X, X〉 − ∂

∂z
〈D ∂

∂z
X, X〉+ 〈D ∂

∂z
X, D ∂

∂z
X〉 −RM (

∂

∂z
,
∂

∂z
,X,X)− ‖DT

∂
∂z

X‖2

=
∂

∂z
〈D ∂

∂z
X, X〉 − ∂

∂z
〈D ∂

∂z
X, X〉+ ‖D⊥∂

∂z

X‖+ ‖DT
∂
∂z

X‖2 −RM (
∂

∂z
,
∂

∂z
,X,X)− ‖DT

∂
∂z

X‖2
(3.7)

Integrating over Σ, using the fact that X has compact support and plugging into (3.6), we
get

δ2Σ(X,X) = 2

ˆ
Σ

2‖D⊥∂
∂z

X‖2 −RM (
∂

∂z
,
∂

∂z
,X,X)−RM (

∂

∂z
,X,

∂

∂z
,X)
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−RM (
∂

∂z
,X,

∂

∂z
,X)− 2‖DT

∂
∂z

X‖2dx1 ∧ dx2(3.8)

By the first Bianchi identity,

RM (
∂

∂z
,
∂

∂z
,X,X) +RM (

∂

∂z
,X,

∂

∂z
,X) = −RM (X,

∂

∂z
,
∂

∂z
,X) = RM (

∂

∂z
,X,

∂

∂z
,X).

Therefore from (3.8) we get

δ2Σ(X,X) = 2

ˆ
Σ

2‖D⊥∂
∂z

X‖2 − 2RM (
∂

∂z
,X,

∂

∂z
,X)− 2‖DT

∂
∂z

X‖2dx1 ∧ dx2

= 4

ˆ
Σ
‖D⊥∂

∂z

X‖2 −RM (
∂

∂z
,X,

∂

∂z
,X)− ‖DT

∂
∂z

X‖2dx1 ∧ dx2

as stated. The proof is now complete.

�

In the case where the ambient manifold is Rn, (3.4) simplifies and we have the following beautiful
stability criterion.

Corollary 3.6. Suppose Σ2 ⊆ Rn is a stable oriented minimal surface, then

(3.9)

ˆ
Σ
‖DT

∂
∂z

X‖2dx1 ∧ dx2 ≤
ˆ

Σ
‖D⊥∂

∂z

X‖2dx1 ∧ dx2, for all X ∈ Γ(NCΣ)

Proof. Each section X ∈ Γ(NCΣ) can be written as X = X1 + iX2, where X1, X2 are sections of
the real normal bundle NΣ. Then we have

δ2Σ(X,X) = δ2Σ(X1, X1) + δ2(X2, X2) ≥ 0,

where the last inequality is true by stability. The corollary now follows from Proposition 3.4. �

3.2. Stable minimal surfaces in R4 and T 4. Let’s come back to complete oriented stable min-
imal surfaces in R4. Recall that our goal is to construct an orthogonal complex structure J on
R4 with respect to which Σ is holomorphic. We introduce some notations before describing the
construction. We will roughly be following [Mic84].

For clarity, below we suppose Σ is the image of an isometric stable minimal immersion F : M2 →
R4, where M2 is a complete oriented surface. Let E 'M ×R4 denote the pullback of TR4 and its
metric structure via F . Then we can view TM as a sub-bundle of E and use the metric to define
the orthogonal complement bundle, which we denote by NM . Since M is oriented, the pullback
metric induces a complex structure JT on M . Also, still by orientability, we can define a complex
structure J⊥ on NM by rotation by 90◦ in the clockwise or counterclockwise direction (notice that
we have a choice here). We then define J : M → Hom(E) as follows: for each p ∈ M , given a
vector v ∈ Ep, we define,

Jp(v) = JTp (vT ) + J⊥p (v⊥),

where vT and v⊥ denote the orthogonal projections of v onto TpM and NpM , respectively.
The triviality of E allows us to view J as a map from M to Hom(R4). What we want to

demonstrate now is that J is constant, so that J : M → Hom(R4) extends as a complex structure
on all of R4. To see this, we first complexify E, TM and NM and extend JT and J⊥ to be complex
linear maps. Then JT gives rise to a splitting

TCM = T 1,0M ⊕ T 0,1M.

Likewise, NCM splits as N1,0M ⊕N0,1M . We denote N1,0M by V ; then N0,1M = V . With these
notations, we form the following sub-bundle of EC 'M × C4:

W = T 1,0M ⊕ V.
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For each p ∈ M , the fiber Wp is a subspace of C4. The constancy of J is then translated into the
constancy of W .

Proposition 3.7. If Γ(W ) is closed under the usual directional derivatives in C4, then Wp is
independent of p.

Proof. Take w ∈Wp ⊆ C4 and extend it as a constant vector field on M . Note that since

C4 = Wp ⊕W p,

for each q ∈M we can decompose wq = w1,0
q +w0,1

q , with w1,0
q ∈Wq and w0,1

q ∈W q. We will show
that w0,1 is constantly zero. To see this, observe that since w is a constant vector field, letting ∂
denote a directional derivative, we have

0 = ∂w = ∂w1,0 + ∂w0,1

= (∂w)1,0 + (∂w)0,1(3.10)

where the last equality follows from the assumption that Γ(W ) is closed under differentiation.
Since Wp ⊕W p is a direct sum, (3.10) immediately implies that both w1,0 and w0,1 are constant.

In particular, since w0,1
p = 0, we see that w0,1 is constantly zero. �

To check that Γ(W ) is closed under differentiation, we will use the following proposition.

Proposition 3.8. Let F⊥zz denote the projection of Fzz onto NCM and let F 1,0
zz , F 0,1

zz be the pro-

jection of F⊥zz onto V , V , respectively. If F 0,1
zz = 0 then Γ(W ) is closed under differentiation.

Proof. Recall that F is minimal. Introducing isothermal coordinates, F is also conformal. Thus F
is harmonic and we have

(3.11) Fz · Fz = 0 (Conformality)

(3.12) Fzz = 0 (Harmonicity)

Next take a local positive orthonormal frame {e3, e4} of NM such that

J⊥(e3) = e4; J⊥(e4) = −e3,

and let ε = 1√
2
(e3 − ie4). Then V = spanC(ε) and W = spanC(ε, Fz).

Now let s ∈ Γ(W ) and write
s = a(z)Fz + b(z)ε.

To save notations, below we simply write X ' Y if X ≡ Y mod W . Now we compute

(3.13)
∂

∂z
s ' aFzz + b

∂

∂z
ε,

and expand the two terms on the right using the basis {Fz, Fz, ε, ε}. The first term becomes

Fzz =
Fzz · Fz
|Fz|2

Fz +
Fzz · Fz
|Fz|2

Fz + (Fzz · ε)ε+ (Fzz · ε)ε

' Fzz · Fz
|Fz|2

Fz + (Fzz · ε)ε =
Fzz · Fz
|Fz|2

Fz + (F 0,1
zz · ε)ε,

where we used the fact that F 1,0
zz · ε = 0 in the last equality. Now by (3.11), the first term above

vanishes. Using the assumption F 0,1
zz = 0, we see that the second term vanishes as well. Thus

Fzz ' 0; that is, Fzz ∈ V .
Next we look at the second term in (3.13). Then we have

∂

∂z
ε '

∂
∂z ε · Fz
|Fz|2

Fz + (
∂

∂z
ε · ε)ε
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=
∂
∂z ε · Fz
|Fz|2

Fz (ε had unit length)

= −ε · Fzz
|Fz|2

Fz (integrate by parts in the first term)

= −ε · F
0,1
zz

|Fz|2
Fz (F 1,0

zz · ε = 0)

= 0 (by assumption) .

Thus for each section s of W , we’ve shown that ∂
∂zs ' 0. Similarly we can show that ∂

∂zs ' 0.
Thus Γ(W ) is preserved by differentiation. �

To verify the assumption of Proposition 3.8, we suppose in addition that M is parabolic.

Definition 3.9. Given a Riemannnian surface M , we say that M is parabolic if every positive
superharmonic function on M is constant.

Below we give some examples of parabolic manifolds.

Example 3.10.

(1) The complex plane C is parabolic. On the other hand, the unit disk D ⊂ C is not parabolic.
(2) Any compact Riemann surface with finitely many punctures is parabolic.
(3) If M is a complete surface with |M ∩BR| ≤ CR2 for R large, then M is parabolic.

Proof. Suppose u > 0 is a positive superharmonic function on M . Letting w = log u, we
have

∆w =
∆u

u
− |∇u|

2

u2
≤ ∆u

u
− |∇w|2

≤ −|∇w|2 (since ∆u ≤ 0) .(3.14)

Next we test the inequality (3.14) against ϕ2, where ϕ is any test function ϕ ∈ C1
C(M),

getting ˆ
M
ϕ2|∇w|2d vol ≤ −

ˆ
M
ϕ2∇wd vol = 2

ˆ
M
φ〈∇ϕ,∇w〉d vol

≤ 1

2

ˆ
M
ϕ2|∇w|2d vol +2

ˆ
M
|∇ϕ|2d vol

Hence we get ˆ
M
ϕ2|∇w|2d vol ≤ 4

ˆ
M
|∇ϕ|2d vol .

Applying the logarithmic cut-off trick as in the proof of the Bernstein theorem in the last
section, we conclude that w, and thus u, is constant. �

(4) If Σ2 ⊆ Rn is an entire minimal graph, then Σ with the induced metric is parabolic.

Proof. We will prove that Σ is conformally equivalent to C. By the uniformization theorem,
we know that Σ is conformally equivalent either to C or to D. Assume by contradiction
that the latter holds and let F : D → Σ be a biholomorphic map. Since Σ is isometrically
and minimally embedded, F is harmonic as a map of D into Rn. Modifying F by an
automorphism of D is necessary, we may assume that F (0) = (0, 0, u(0, 0)).

Next denote F̃ (x1, x2) = (F1(x1, x2), F2(x1, x2)). By the previous paragraph, F̃ is a
harmonic diffeomorphism from D to (R2, h), where h is obtained by pulling back the induced
metric on Σ via (x1, x2) 7→ (x1, x2, u(x1, x2)).
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Recall that in complex coordinates, the Jacobian of F̃ can be written as

(3.15) J(F̃ ) = |F̃z|2 − |F̃z|2,

which is everywhere strictly positive since F̃ is a diffeomorphism. This implies that |F̃z| is
everywhere non-zero, so we can define a metric g̃ on D by

g̃ = |F̃z|2|dz|2.

Now since F̃ is harmonic, we have Fzz = 0 and hence ∆|F̃z|2 = 0, which means that (D, g̃)
is flat (Gauss curvature zero).

Using (3.15) again, we see that |dF̃ | is dominated by |F̃z| and hence

F̃ ∗(h) ≤ cg̃,
where c is a dimensional constant. Now for an arbitrary R > 0, we can choose r such that

distF̃ ∗(h)(0, ∂Dr) = disth(0, ∂(F (Dr))) ≥ R.

Combining this with the previous inequality, we get

(3.16) cdistg̃(0, ∂Dr) ≥ R
Next we take the coordinate function x on D. Then{

∆g̃x = 0
|x| ≤ 1

so by the harmonic function estimates in [CY75] and the definition of g̃, we have

1

|Fz|2
= |∇g̃x|2(0) ≤ c

distg̃(0, ∂Dr)2
≤ c

R2
.

This in turn gives us

|dF̃ |2(0) ≥ |F̃z|2(0) ≥ cR2.

Since R is arbitrary, we obtain a contradiction, so Σ is conformally equivalent to C and
hence parabolic. �

After this little digression into parabolic manifolds we return to our problem and give the precise
statement of the main result of this section.

Theorem 3.11. Assume F : M2 → R4 is an oriented, stable, parabolic, complete minimal surface.
Then F is J-holomorphic for some orthogonal complex structure J on R4.

Proof. By Proposition 3.8, the proof reduces to showing that F 0,1
zz vanishes. We will demonstrate

this by plugging special test functions into the stability inequality (3.4) and using parabolicity. To
that end we consider a test function of the form fs, where f is a real-valued smooth function with
compact support on M , and s ∈ Γ(NCM). Then we have

(3.17) δ2Σ(fs, fs) =

ˆ
M
|fz|2|s|2 − f2(Re〈s,Dzzs〉)− f2|(∂Tz s)|2dx1 ∧ dx2,

where we’re using D to denote D⊥. To derive this formula, we recall that by (3.4) we have

(3.18) δ2Σ(fs, fs) =

ˆ
M
|Dz(fs)|2 − |∂Tz (fs)|2dx1 ∧ dx2

To handle the first term we computeˆ
|Dz(fs)|2 =

ˆ
Dz(fs) ·Dz(fs) =

ˆ
(fzs+ fDzs) · (fzs+ fDzs)

=

ˆ
|fz|2|s|2 + f2|Dzs|2 + ffzDzs · s+ (complex conjugate of the previous term)
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=

ˆ
|fz|2|s|2 + f2|Dzs|2 + 2Re(ffzDzs · s)(3.19)

Now notice that ˆ
ffzDzs · s =

1

2

ˆ
(f2)zDzs · s

= −1

2

ˆ
f2DzDzs · s−

1

2

ˆ
f2|Dzs|2

Plugging this back into (3.19), we get

(3.20)

ˆ
|Dz(fs)|2 =

ˆ
|fz|2|s|2 − f2Re(Dzzs · s)

For the second term in (3.18), we notice that

∂z(fs) = fzs+ f∂zs.

Since s is a normal section, projection onto TM kills the first term and we’re left with

(3.21) ∂Tz (fs) = f(∂Tz s)

(3.17) now follows by plugging (3.20) and (3.21) back into (3.18). To proceed, we take a vector
a ∈ C4 and denote by a1,0(p) its projection onto Vp. Applying (3.17) with a1,0 in place of s and
using the stability of M in R4, the result we get is the following

(3.22)

ˆ
M
f2q(a)dA ≤

ˆ
M
|∇f |2|a1,0|2dA ≤ |a|

ˆ
M
|∇f |2dA,

where q is the following expression:

(3.23) q(a) =
−2

|Fz|4
Re
{

(F 1,0
zz · a)(F 1,0

zz · a)
}
.

Take an orthonormal basks {a1, . . . , a4} of C4, denote q(aj) by qj and sum over j, we obtain

(3.24)
4∑
j=1

qj =
−2

|Fz|4
Re
{
F 1,0
zz · F

1,0
zz

}
= 0

Now by [FCS80], the inequality (3.22) with qj in place of q(a) implies the existence of a positive
function uj on M solving

(3.25) ∆uj + qjuj = 0

Letting wj = log uj , an easy calculation shows that

∆wj = −qj − |∇wj |2.
Thus we get ˆ

M
(qj + |∇wj |2)f2 =

ˆ
M

(−∆wj)f
2 = 2

ˆ
M
f∇f · ∇wj

≤ 1

2

ˆ
M
f2|∇wj |2 + 2

ˆ
M
|∇f |2,

and therefore ˆ
M

(qj +
1

2
|∇wj |2)f2 ≤ 2

ˆ
M
|∇f |2

Summing over j and using (3.24), we deduce that

1

2

ˆ
M

4∑
j=1

|∇wj |2f2 ≤ 8

ˆ
M
|∇f |2.



16 NOTES BY DAREN CHENG, CHAO LI, CHRISTOS MANTOULIDIS

Again by [FCS80], we get a positive function v such that

8∆v +
1

2
(

4∑
j=1

|∇wj |2)v = 0

⇒ ∆v ≤ 0;

that is v is a positive superharmonic function. By the parabolicity of M , v must be a (nonzero)

constant. Looking back at the PDE satisfied by v, we immediately deduce that
4∑
j=1
|∇wj |2 = 0, so

each wj , and hence each uj , is constant. By (3.25), we see that each qj is zero. Since the aj ’s form
a basis for C4, we conclude that

(3.26) q(a) =
−2

|Fz|4
Re
{

(F 1,0
zz · a)(F 1,0

zz · a)
}

= 0, for all a ∈ C4.

Now at a point p where F⊥zz(p) 6= 0, we can let a =
F⊥zz
|F⊥zz |

and plug it into (3.26). Then we get

(3.27) |F 1,0
zz (p)||F 0,1

zz (p)| = 0.

Thus at each p ∈ M , one of F 1,0
zz (p) and F 0,1

zz (p) must vanish. The fact that F is conformal and

harmonic implies that F 1,0
zz dz2 and F 0,1

zz dz2 are holomorphic quadratic differentials with values in V
and V , respectively. Hence we conclude, by unique continuation, that either F 1,0

zz or F 0,1
zz vanishes

identically. In the latter case, the proof is complete by invoking Proposition 3.8. In the former
case we simply change the complex structure J⊥ on NM . (Recall that we had a choice when
constructing J⊥. See the remarks before Proposition 3.7.) �

More or less the same argument establishes the same theorem in the compact setting of ambient
flat 4-tori instead of R4.

Theorem 3.12. Assume F : M2 → T 4 is an oriented, stable, compact minimal surface and that
T 4 is a flat torus. Then F is J-holomorphic for some orthogonal complex structure J on T 4.

Proof sketch. By arguing as in 3.11 we get λ0(∆ + qj) ≥ 0 on M for all j ∈ {1, 2, 3, 4}. Let
uj = ewj > 0 be the lowest eigenfunction so that, as before,ˆ

M
(qj +

1

2
|∇wj |2)f2 ≤ 2

ˆ
M
|∇f |2 for j ∈ {1, 2, 3, 4}.

Summing over j and recalling the definition of the qj we conclude

1

2

ˆ
M

∑
j

|∇wj |2f2 ≤ 8

ˆ
M
|∇f |2.

Picking f = 1 (since M compact) we see that each wj is constant, so each uj is constant, so
qj = λ0(∆ + qj) is constant. Since the qj sum to zero they must then all be zero and the result
follows like before. �

In the proof of Theorem 3.11 we made use of identity (3.23) in (3.22). Let’s justify that now:

Claim 3.13. We can rewrite

2

|Fz|2

[
|a1,0 · Fzz|2

|Fz|2
+ Re

(
a1,0 ·DzDza

1,0
)]

= − 2

|Fz|4
Re
(

(F 1,0
zz · a)(F 1,0

zz · a)
)

where a ∈ C4, |a| = 1.
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Proof of claim. Recall that ε = 1√
2
(e3 − ie4) is such that {ε, ε} forms an orthonormal frame for

NCM = V ⊕ V . Note that ε · ε = ε · ε = 0 and ε · ε = 1. By differentiating a1,0 = (a · ε)ε once and
using the product rule,

Dza
1,0 = ∂z(a · ε)ε+ (a · ε)Dzε

= (a · (∂zε)T )ε+ (a ·Dzε)ε+ (a · ε)
[
(Dzε · ε)ε+ (Dzε · ε)ε

]
= (a · (∂zε)T )ε+

[
a ·
(
(Dzε · ε)ε+ (Dzε · ε)ε

)]
ε+ (a · ε)

[
(Dzε · ε)ε+ (Dzε · ε)ε

]
= (a · (∂zε)T )ε+ (a · ε)(Dzε · ε)ε+ (a · ε)(Dzε · ε)ε,

because Dzε · ε = Dzε · ε = 0, as ε · ε = ε · ε = 0

= (a · (∂zε)T )ε,

because ε · ε = 1

=
[
a ·
(
(∂zε · (Fz/|Fz|2))Fz + (∂zε · (Fz/|Fz|2))Fz

)]
ε

= −
(
a · Fz
|Fz|2

)
(ε · Fzz) ε.(3.28)

where the last equality follows from the product rule and minimality, Fzz = 0. We will differentiate
again in z, but before doing so, first we observe that

∂z

(
Fz
|Fz|2

)
· Fz = 0 by conformality, Fz · Fz = 0, and

∂z

(
Fz
|Fz|2

)
· Fz = 0 by minimality, Fzz = 0.

Consequently, ∂z(Fz/|Fz|2) is purely normal and thus

∂z

(
Fz
|Fz|2

)
=

F⊥zz
|Fz|2

.

Plugging this into (3.28) and exploiting similar cancelations among the derivatives of ε, ε, we get

DzDza
1,0 = −

(
a · F

⊥
zz

|Fz|2

)
(ε · Fzz) ε = −

(
a · F

⊥
zz

|Fz|2

)
F 1,0
zz

and

a1,0 ·DzDza
1,0 = −

(
a · F

⊥
zz

|Fz|2

)
(a1,0 · F 1,0

zz ) = −
(
a · F

⊥
zz

|Fz|2

)
(a · F 1,0

zz )

by replacing a1,0 with a in the dot product with F 1,0
zz . By replacing F⊥zz = F 1,0

zz + F 0,1
zz and then

using F 0,1
zz = F 1,0

zz we get

a1,0 ·DzDza
1,0 = −a · F

1,0
zz

|Fz|2
(a · F 1,0

zz )− a · F 0,1
zz

|Fz|2
(a · F 1,0

zz )

= −a · F
1,0
zz

|Fz|2
(a · F 1,0

zz )− |a · F
0,1
zz |2

|Fz|2

= −a · F
1,0
zz

|Fz|2
(a · F 1,0

zz )− |a
1,0 · Fzz|2

|Fz|2
.
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From this we conclude

Re

(
a1,0 ·DzDza

1,0 +
|a1,0 · Fzz|2

|Fz|2

)
= − 1

|Fz|2
Re
(

(a · F 1,0
zz )(a · F 1,0

zz )
)

which gives the required result. �

3.3. Stable minimal genus-0 surfaces in Rn, n ≥ 5. We now try to see what we can prove
when R4 (or T 4) is replaced by Rn, n ≥ 5. We will show that:

Theorem 3.14. Let F : M2 → Rn, n ≥ 5, with M complete, oriented, stable, genus 0, and finite
total curvature. Then there exists an affine subspace A2k ⊂ Rn such that F is J-holomorphic for
some J .

Remark 3.15. The requirement of finite total curvature might appear to be too strong but in fact
it isn’t. One can check using Gauss-Bonnet that, provided F is proper,

quadratic area growth, |χ(M)| <∞⇔ finite total curvature.

We will appeal to a theorem by Chern and Osserman [CO67]:

Theorem 3.16 ([CO67]). Suppose M2 ⊂ Rn is a complete orientable minimal surface with finite
total curvature, i.e., ˆ

M
(−K) dA <∞.

Then M is conformally equivalent to a punctured compact surface M̂ and the Gauss map extends
through the punctures, meaning p 7→ TpM , NpM extend smoothly to M̂ .

We will also need the following consequence of the stability inequality

(3.29) 2

ˆ
M

[
f2 |(∂zs)T |2

|Fz|2
+

f2

|Fz|2
Re (s ·DzDzs)

]
dA ≤

ˆ
M

ˆ
|∇f |2 |s|2 dA,

for all f ∈ C∞c (M).

Lemma 3.17. Suppose M is complete, oriented, stable, parabolic, and that s is a bounded section
of NCM with Dzs = 0. Then (∂zs)

T = 0.

Proof. From (3.29) with Dzs = 0 and |s| bounded we conclude thatˆ
M
f2 |(∂zs)T |2

|Fz|2
dA ≤ c

ˆ
M
|∇f |2 dA

for all f , so by elliptic theory there exists u > 0 with

∆u+
|(∂zs)T |2

c|Fz|2
u = 0.

By parabolicity u needs to be constant, and therefore (∂zs)
T = 0. �

Proof of Theorem 3.14. By invoking the Chern-Osserman theorem we can construct a complex
(n− 2)-plane bundle E → M̂ extending NCM , where M̂ ≈ S2 in view of our genus 0 assumption,
and we can also extend the connection D from before to a connection on E.

By [KM58] and the fact that dimM = 2 it follows that E is a holomorphic vector bundle; i.e.,
for all p ∈ S2 there exists a local basis s1, . . . , sn−2 of E which is holomorphic (Dzsj = 0). By
[Gro57], the holomorphic vector bundle E necessarily decomposes as a direct sum

E = (L1 ⊕ · · · ⊕ Lp)⊕ (Lp+1 ⊕ · · · ⊕ Lr)⊕ (Lr+1 ⊕ · · · ⊕ Ln−2)

of complex line bundles order so that:

(1) L1, . . . , Lp have c1(L) > 0,
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(2) Lp+1, . . . , Lr have c1(L) = 0, and
(3) Lr+1, . . . , Ln−2 have c1(L) < 0.

Roughly speaking, we will show that if there are no flat bundles then F is going to be J-
holomorphic; conversely, flat bundles will correspond to direction of vanishing of the second funda-
mental form and will help determine the affine space A2k from the statement of the theorem.

Seeing as to how E was initially constructed as a complexification of a real bundle, the real pairing
Ex × Ex → R, (s1, s2) 7→ s1 · s2, gives rise to a holomorphic isomorphism E ∼= E∗. According to
this isomorphism the signs of the first Chern classes flip and therefore our original decomposition
has to have as many positive line bundles as it does negative ones; namely, p = n− 2− r.

By definition of c1(·), the bundles L1, . . . Lr (whose first Chern class is non-negative) all ad-
mit nontrivial global holomorphic sections s1, . . . , sn−2. Since S2 is compact, these sections are
additionally bounded. By Lemma 3.17 above, (∂zsj)

T = 0 for all j ∈ {1, . . . , r}.
There are two cases to consider. First, suppose that all Li have c1 = 0. Then s1, . . . , sn−2 is a

global basis of holomorphic sections which we have showed satisfy (∂zsj)
T = 0 and therefore the

second fundamental form of M vanishes:

s =
∑
j

ajsj ⇒ −
(s · F⊥zz)Fz
|Fz|2

=
∂zs · Fz
|Fz|2

= (∂zs)
T = 0.

Therefore M is totally geodesic and we’re done.
Now suppose that p > 0, n − 2 − r = p > 0. For convenience we set up the following table of

index notation:

1 ≤ µ, ν ≤ p, r + 1 ≤ a, b ≤ n− 2,

1 ≤ i, j ≤ r, p+ 1 ≤ A,B ≤ n− 2.

In other words, indices µ, ν run over positive line bundles, i, j run over non-negative line bundles,
and so on. We list some properties of s1, . . . , sn−2 that we will need.

(1) sµ · sj = 0, since
∂z(sµ · sj) = Dzsµ · sj + sµ ·Dzsj = 0

because we know that our sections are holomorphic. Therefore sµ · sj is a holomorphic
function on S2, thus constant. However, the section sµ belongs to a positive line bundle
and necessarily vanishes somewhere. The claim follows. As a consequence, we get:

(3.30) span{L1, . . . , Lr}⊥ = span{L1, . . . , Lp}.
(2) ∂zsj · sk = 0, since

∂z(∂zsj · sk) = ∂z∂zsj · sk + ∂zsj · ∂zsk
= ∂z(∂zsj · sk)− ∂zsj · ∂zsk + ∂zsj · ∂zsk.

Since sj is holomorphic, ∂zsj is purely tangential so the first term drops out by orthogonality.
Next, sk is a bounded holomorphic section so by Lemma 3.17 (which relies on stability),
∂zsk is purely normal, the second term drops out by orthogonality. The same goes for the
third term. Therefore the expression above vanishes, so ∂zsj ·skdz is a holomorphic 1-form.
The claim follows since Riemann-Roch forces such a differential to vanish identically. From
this it follows that ∂zsj ∈ span{L1, . . . , Lp}, and since (∂zsj · sk)T = 0 by stability (Lemma
3.17), we get

(3.31) ∂zsj , Dzsj ∈ span{L1, . . . , Lp}.
Now we check the following

Claim 3.18. The bundle ξ = L1 ⊕ · · · ⊕ Lr ⊕ (TCM)1,0 is parallel.
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Proof of claim. By Proposition 3.7 we need to check that ∂z, ∂z map Γ(ξ) into itself. By linearity
this amounts to showing

∂zsj , ∂zsj , ∂zFz, ∂zFz ∈ Γ(ξ).

By minimality ∂zFz ∈ Γ(ξ) is clear, while ∂zsj ∈ Γ(ξ) is just (3.31). For the other two cases we
compute

∂zsj = (∂zsj)
T because Dzsj = 0 by holomorphicity

=

(
∂zsj ·

Fz
|Fz|2

)
Fz +

(
∂zsj ·

Fz
|Fz|2

)
Fz

=

(
∂zsj ·

Fz
|Fz|2

)
Fz,

the last equality following from minimality, Fzz = 0, and therefore ∂zsj ∈ Γ(ξ). Likewise we find

∂zFz =

(
∂zFz ·

Fz
|Fz|2

)
Fz +

(
∂zFz ·

Fz
|Fz|2

)
Fz + (∂zFz)

⊥

=

(
∂zFz ·

Fz
|Fz|2

)
Fz + (∂zFz)

⊥,

seeing as to how the first term drops out in view of conformality, Fz · Fz = 0. Now we observe
∂zFz · sk = −Fz · ∂zsk = 0 by stability, and we conclude ∂zFz ∈ Γ(ξ). This completes the proof of
the claim. �

Next we check the following

Claim 3.19. We have dim(ξ ∩ ξ) = r − p.

Proof of claim. Recall that ξ = L1 ⊕ · · · ⊕ Lr ⊕ (TCM)1,0. For brevity write V = L1 ⊕ · · · ⊕ Lr, so
that ξ = V ⊕ (TCM)1,0. From (3.30) we see that V ⊥ ⊂ V , so span{ξ, ξ} = Cn. Observe that

n = dimCn = dim span{ξ, ξ} = 2r + 2− dim(ξ ∩ ξ)

which gives dim(ξ∩ξ) = 2r+2−n. From the decomposition of E into line bundles by Grothendieck’s
theorem we further have p+ r = n−2⇔ r = n−2−p. Combining these two relations we conclude

dim(ξ ∩ ξ) = 2(n− 2− p) + 2− n = n− 2− 2p = r − p

which is the required result. �

The proof of the theorem is now completed via the following sequence of steps:

(1) Since ξ is parallel, let’s write ξ = M × Λ for a complex (r + 1)-dimensional vector space
Λ. Notice that the complex (r − p)-dimensional vector space T = Λ ∩ Λ is (by definition)
preserved by complex conjugation and therefore the complexification W ⊗R C of a real
(r − p)-dimensional vector space W .

(2) Seeing as to how (TCM)1,0 is manifestly not preserved by conjugation we get that M ×W
is a parallel subbundle of the real normal bundle NM , or in other words, that Σ = F (M)
is a subset of an affine subspace P ⊂ Rn perpendicular to W , the dimension of which is
evidently dimRn−dimW = n− (r− p) = n− r+ p = 2p+ 2. That is, we have constructed
an affine subspace P 2p+2 ⊂ Rn that contains the surface Σ.

(3) From the decomposition NCM = (M × T ) ⊕ (M × T )⊥, the ⊥ being taken within NCM
of course, we characterize (M × T )⊥ as the complexified normal bundle of Σ viewed as a
surface within P 2p+2.
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(4) From (3.30) we find that (M × T )⊥ ⊂ L1 ⊕ · · · ⊕ Lp ⊕ L1 ⊕ · · · ⊕ Lp and, by dimension
counting, this inclusion is actually an exact equality. Namely,

(M × T )⊥ = L1 ⊕ · · ·Lp ⊕ L1 ⊕ · · · ⊕ Lp.

(5) By restricting to the context Σ2 ⊂ P 2p+2 and the parallel nature of ξ we find that there exists
a constant almost complex structure on P 2p+2 with respect to which Σ2 is J-holomorphic
as in the proof of Theorem 3.11.

�

4. Positive isotropic curvature

We’ll see that a number of the techniques developed in the previous section will extend to non-
flat ambient spaces and thereby give important geometric consequences. Instead of studying the
second variation operator for area, however, we will study the second variation operator for energy:

E(F ) =

ˆ
Σ
|dF |2h dAh

where F : Σ2 → (Mn, g). For the purposes of computing the energy integral, the Riemann surface
Σ2 is thought of as being a Riemannian manifold (Σ2, h), though the Dirichlet energy is conformally
invariant as we have seen before.

By a computation similar to that for second variation of area, we find:

Proposition 4.1. If X ∈ Γ(F ∗(TM)) and F is a critical point for the energy functional, then

1

2
δ2E(X,X) =

ˆ
Σ
|∇X|2 −

2∑
i=1

R(ei, X, ei, X) dAh.

Remark 4.2. This is reminiscent of the formula for the second variation of energy on geodesics
γ ⊂M ,

1

2
δ2E(X,X) =

ˆ
γ
|∇γ′X|2 −R(γ′, X, γ′, X) ds.

We will complexify the (ambient) tangent bundle and the stability operator like we did before.
For X ∈ Γ(F ∗(TCM)) of the form X = X1 + iX2, we define

1

2
δ2E(X,X) =

ˆ
Σ
〈∇X,∇X〉 −

2∑
i=1

R(ei, X, ei, X) dAh,

and by arguing as in Proposition 3.4 we get:

Proposition 4.3. If X ∈ Γ(F ∗(TCM)) and F is a critical point for the energy functional, then in
complex coordinates z = x+ iy we have

1

8
δ2E(X,X) =

ˆ
Σ
|∇zX|2 −R(∂z, X, ∂z, X) dx dy.

Remark 4.4. In general variations of energy and area behave differently. Critical points of the
prior are harmonic maps, and critical points of the latter are minimal surfaces. (Recall that we’ve
seen that these coincide on a round S2.) The second variation of energy and the second variation
of area behave differently, too. The stability operator for energy is easier to work with since it has
one less term in it but is also coarser–for example, every harmonic map into flat space is clearly
stable.
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It is important to be able to understand the effect of curvature on stabiliity. In the context of
the area functional, we know that positive curvature gives rise to instability. Likewise, we can force
instability in Proposition 4.3 provided we can construct global holomorphic sections X and that
the complex sectional curvatures R(∂z, X, ∂z, X) are positive. This section aims to pursue these
ideas further.

Let’s set up our notation. Recall that Mn is a real Riemannian manifold with real metric 〈·, ·〉.
We complexify TCM = TM ⊗R C and extend 〈·, ·〉 to TCM , mimicking the extension of the dot
product X · Y on Rn to a dot product on Cn. Namely, for X = X1 + iX2 ∈ TCM we set

〈X,X〉 = 〈X1, X1〉 − 〈X2, X2〉+ 2i〈X1, X2〉.
Notice that this is not a Hermitian metric, just symmetric and bilinear over C.

Definition 4.5. A vector X ∈ TCM is called isotropic if 〈X,X〉 = 0; i.e., if |X1| = |X2| and
〈X1, X2〉 = 0. A plane Π2 ⊂ TCM is isotropic if every X ∈ Π is isotropic.

Example 4.6. If F is conformal, then Fz = dF (∂z) is isotropic. We made extended use of this
fact in the previous section.

Lemma 4.7. If Π2 ⊂ TCM is isotropic then there exist real vectors e1, e2, e3, e4 ∈ TM , orthonormal
with respect to the real metric, such that

Π2 = span{e1 + ie2, e3 + ie4}.

Proof. The pairing (X,Y ) = 〈X,Y 〉 is Hermitian, and by Gram-Schmidt over C we may arrange for
a basis X,Y of Π2 to be such that (X,X) = (Y, Y ) = 1 and (X,Y ) = 0. Write X = 1√

2
(e1 + ie2),

Y = 1√
2
(e3 + ie4). We make the following observations:

(1) The isotropy of X and Y and the fact that 〈X,X〉 = 〈Y, Y 〉 = 1 together give

〈e1, e1〉 = 〈e2, e2〉 = 〈e3, e3〉 = 〈e4, e4〉 = 1,

and 〈e1, e2〉 = 〈e3, e4〉 = 0.

(2) The isotropy of X + Y = 1√
2
(e1 + e3 + i(e2 + e4)) gives

〈e1 + e3, e1 + e3〉 = 〈e2 + e4, e2 + e4〉 ⇔ 〈e1, e3〉 = 〈e2, e4〉,
and 0 = 〈e1 + e3, e2 + e4〉 = 〈e1, e4〉+ 〈e2, e3〉.

(3) The complex orthogonality 〈X,Y 〉 = 0 gives

0 = 〈e1 + ie2, e3 − ie4〉 = 〈e1, e3〉+ 〈e2, e4〉+ i[〈e2, e3〉 − 〈e1, e4〉].
These facts put together show that e1, e2, e3, e4 are real orthonormal vectors. �

Definition 4.8. A (real) Riemannian manifold (Mn, g) is called PIC (short of positive isotropic
curvature, or originally positive curvature on totally isotropic 2-planes) if every isotropic 2-plane
Π2 ⊂ TCM and every complex orthonormal basis X, Y for Π satisfy R(X,Y,X, Y ) > 0.

Remark 4.9. Just for the sake of comparison, we recall that a Riemannian manifold is said to
have positive (sectional) curvature if R(X,Y,X, Y ) > 0 for every real orthonormal basis X, Y of
every real 2-plane Π2 ⊂ TM .

We make the following observations regarding the definition of PIC:

(1) PIC manifolds are not necessarily Ricci positive. In particular, round products S1 × Sn−1

are always PIC but not Ricci positive.
(2) We can perturb the spherical metrics above in such a way that S1 × Sn−1 is still PIC and

yet has negative Ricci curvature somewhere.
(3) PIC manifolds are always scalar positive.
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(4) All 2- and 3-manifolds are vacuously PIC, because they have no isotropic complex 2-planes,
since isotropic subspaces can be checked to take up no more than half the total dimension
of their ambient vector space.

There are a number of interesting PIC manifolds:

Theorem 4.10 ([MM88]). The following manifolds are PIC:

(1) (Mn, g) with positive curvature operator R : Λ2TM → Λ2TM ; i.e., 〈R(ξ), ξ〉 > 0 for all
ξ ∈ Λ2TpM \{0}.1 In fact, it’s enough for R to be (2,2)-positive, i.e. the positivity condition
be met for 2-vectors ξ with tensor-rank at most 2.

(2) (Mn, g) with positive pointwise strictly 1
4 -pinched curvature; i.e., there exists a continuous

κ : M → (0,∞) such that 1
4κ(p) < KΠ ≤ κ(p) for all Π2 ⊂ TpM .

The following theorem by Micallef and Wang shows that the class of PIC manifolds is rich enough
to support connected sums.

Theorem 4.11 ([MW93]). If (Mn
1 , g1), (Mn

2 , g2) have isotropic curvatures bounded from below by
a positive constant (e.g., if they are compact and PIC), then Mn

1 #Mn
2 supports a PIC metric.

We proceed by proving the fact that a manifold is PIC if the curvature operator is positive
definite or it’s 1/4-pinched.

Proof. By previous lemma any isotropic plane Π is spanned by vectors X,Y with

X =
1

2
e1 + ie2, Y =

1

2
(e3 + ie4).

Then the complexified curvature is given by

R(X,Y, X̄, Ȳ ) = R(X ∧ Y, X̄ ∧ Ȳ ) =
1

4
R((e1 + ie2) ∧ (e3 + ie4), (e1 − ie2) ∧ (e3 − ie4)).

So

K(Π) =
1

4
[R(e1 ∧ e3 − e2 ∧ e4, e1 ∧ e3 − e2 ∧ e4) + R(e1 ∧ e4 + e2 ∧ e3, e1 ∧ e4 + e2 ∧ e3)] > 0,

if the curvature operator R is positive definite. We also see that it suffices to require the curvature
operator is positive operator on the sum of 2 wedges, which is called (2, 2) positive by Michallef-
Moore.

We next prove pointwise strict 1/4-pinching condition implies PIC.
We fix a point on the manifold and let e1, . . . , e4 be 4 orthonormal vectors in the tangent space.

Further expanding the above equation, we have

K(Π) =
1

4
[K13 +K24 − 2R(e2, e4, e1, e3) +K23 +K14 + 2R(e1, e4, e2, e3)]

=
1

4
(K13 +K24 +K14 +K23 − 2R1234).

Here we’ve used the first Bianchi identity.
We conclude the proof by the following property of 1/4-pinched manifold.

Proposition 4.12. If p ∈ M and k(p) > 0 such that 1
4k(p) < K(Π) ≤ k(p) for all two-plane

Π ⊂ TpM , then |R1234| < 1
2k(p).

The proof is straightforward consequence of the following two identities. Let u, v, w, x be 4
orthonormal vectors in TpM .

(i) 4R(u, v, w, v) = R(u+ w, v, u+ w, v)−R(u− w, v, u− w, v)

1Recall that if ξ = u ∧ v is a simple 2-vector, with u, v orthonormal, then 〈R(u ∧ v), u ∧ v〉 = R(u, v, u, v) =
Kspan{u,v}.
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(ii) 6R(u, v, w, x) = R(u, v + x,w, v + x)−R(u, v − x, u, v − x)

−R(v, u+ x,w, u+ x) +R(v, u− x,w, u− x).

From (i) we know 4|R(u, v, w, v)| is bounded above by 2k(p)−2 · 14k(p) = 3
2k(p), so |R(u, v, w, v)| <

3
8k(p). From (ii) we conclude 6|R(u, v, w, x)| is bounded by 4·2· 38k(p), so |R(u, v, w, x)| < 1

2k(p). �

4.1. High homotopy groups of PIC manifolds. We are now ready to state a beautiful theorem
of Micallef-Moore on high homotopy groups of PIC manifolds. The proof of this result relies on
the complexified second variation of energy functional.

Theorem 4.13 ([MM88]). If Mn is compact and PIC then π2(M) = . . . = π[n
2

](M) = {0}.

Corollary 4.14. If Mn is a compact, simply-connected PIC manifold then M is homeomorphic to
Sn.

Proof. From the theorem we see that π1(M) = . . . = π[n
2

](M) = {0}. By the Hurewicz theorem

we know the corresponding homology groups with real coefficients H1(M) = . . . = H[n
2

](M) = {0}.
By Poincaré duality we conclude that every Hj(M) with 0 < j < n is trivial. So Mn is homotopic
to a sphere. By the validity of Poincaré’s conjecture, Mn is homeomorphic to Sn. �

Proof. The proof of this theorem contains two parts.

(1) Existence theorem. If πk(M) 6= {0} then there exists a nonconstant harmonic map F :
S2 →Mn with Morse index is at most k − 2.

(2) Index estimate. If Mn is PIC and F : S2 → M is a nonconstant harmonic map, then the
Morse index of F is at least [n2 ]− 1.

Combing these two facts, if Mn is PIC, k ≥ 2 and πk(M) 6= {0}, then we find a nonconstant
harmonic map F : S2 → M with index(F ) ≤ k − 2. On the other hand, since M is PIC we know
index(F ) ≥ [n2 ]− 1. This gives k − 2 ≥ [n2 ]− 1, which means k ≥ [n2 ] + 1.

We quote the existence part from chapter 1 of our notes. Now we focus on index estimate.
Suppose F : S2 → M is a nonconstant harmonic map. Then the complexified second variation

of energy functional is given by

1

8
δ2E(X, X̄) = I(X, X̄) =

ˆ
S2

[
|∇z̄X|2 −R(Fz, X, Fz̄, X̄)

]
dxdy.

Where X ∈ Γ(F ∗(NCM)).
Now the index form is real, and the complexified index form is the Hermitian extension of its

real form, so we have

index ≥ min{dimC V : V ⊂ Γ(F ∗(NCM)), I < 0 on V }.

Note that whenever we have a holomorphic isotropic section X of the pullback bundle, naturally
we have I(X, X̄) < 0. The proof is done by constructing a large family of holomorphic isotropic
sections.

Claim 4.15. There exists a subspace W ⊂ Γ(F ∗(NCM)), such that ∀X ∈W , ∇z̄X = 0, 〈X,X〉 = 0
and dim(W ) ≥ [n2 ].

Clearly Fz is in W by harmonicity of F . So the complement of Fz in W gives a [n2 ]−1 dimensional
subspace of holomorphic isotropic sections as the theorem infers.

Denote E = F ∗(NCM). As before, E is a Hermitian bundle over S2, so the extended connection
is automatically holomorphic. Again by [Gro57], E splits into line bundles, listed in decreasing
order of first Chern class:

E = (L1 ⊕ · · · ⊕ Lp)⊕ (Lp+1 ⊕ · · · ⊕ Lr)⊕ (Lr+1 ⊕ · · · ⊕ Ln−2) .
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Where L1, . . . , Lp have positive first Chern class, Lp+1, . . . , Lr have zero first Chern class, and
Lr+1, . . . , Ln−2 have negative first Chern class. Choose a section sj ∈ Γ(Lj) for j = 1, . . . , p.
This is always possible since the first Chern class is positive. Also we know that sj must vanish
somewhere. The complex linear pairing 〈sj , sk〉 for 1 ≤ j, k ≤ p is then a holomorphic function on
S2 and vanishes somewhere, so 〈sj , sk〉 = 0 everywhere on S2. Hence we conclude

P = span{s1, . . . , sp}
is a totally isotropic p-dimensional subspace of Γ(E).

Now consider F = Lp+1 ⊕ . . . ⊕ Lr. On each Lq, p + 1 ≤ q ≤ r, there is also a section sq.
But now c1(Lq) = 0 so sq does not necessarily vanish somewhere. However, the complex linearly
extended pairing 〈·, ·〉 defines an isomorphism E → E∗. In this isomorphism, line bundles with
positive and negative first Chern class map to one another, hence F maps to itself. That’s to say,
〈·, ·〉 defines a non-degenerate bilinear form F → F . Hence we are able to take an orthonormal
basis sp+1, . . . , sr of sections of F such that 〈sq, st〉 = δqt. Then the following [n2 ]− p sections

e1 = sp+1 + isp+2, e2 = sp+3 + isp+4, . . .

is a totally isotropic collection of sections. Denote F0 = span{e1, . . . , e[n
2

]−p}.
Let W = P ⊕ F0. Then we claim W is a totally isotropic subspace. Indeed, any section sj

of positive line bundle and sq of zero line bundle must satisfy 〈sj , sq〉 = 0, since the pairing gives
a holomorphic function on S2 that vanishes somewhere. Furthermore, dimC(W ) = dimC(P) +
dimC(F0) = p+ [n2 ]− p = [n2 ], as desired. This concludes the proof of the claim. �

Remark 4.16. This theorem puts an essential obstruction on high homotopy groups for a manifold
to carry a PIC metric. However, the question of understanding the fundamental group of a PIC
manifold remains open. In fact, we know S1 × S3, equipped with product metric, is strictly PIC
(R1234 = 0 for any orthonormal vectors e1, . . . , e4). And by [MW93], the connected sum of two PIC
manifolds supports a PIC metric. For example, we have π1((S1 × S3)#(S1 × S3)) = F2, the free
group with two generators. This observation leads to the following conjecture on the fundamental
group of PIC manifolds.

Conjecture 4.17. M is a PIC manifold. Then the fundamental group of M is virtually free. That
is, there exists F ⊂ π1(M) with F being free and finite index.

It is known this conjecture in PIC manifold is related to a more geometric statement of PIC
manifold. The following geometric property implies the above conjecture.

Conjecture 4.18. If M is κ-PIC, that is, for any isotropic plane Π, K(Π) ≥ κ > 0, and Σ2 ⊂M
is a stable minimal disk, then for every p ∈ Σ, we have d(p, ∂Σ) ≤ c/

√
κ.

4.2. Fundamental group of PIC manifolds. Previously we’ve shown all high homotopy groups
of a PIC manifold must vanish. The fundamental group of a PIC manifold turns out to be quite
different.

In low dimensional cases, all 2 or 3 dimensional manifolds are PIC since there is no isotropic
plane. 4-dimensional PIC manifolds have been completely classified by Hamilton and Chen-Zhu
using Ricci flow, since the PIC condition is preserved under Ricci flow. The following result is the
best known about the fundamental group of a high dimensional PIC manifold till today, with a
proof that also comes from a variational approach.

Theorem 4.19 ([Fra03]). Suppose n ≥ 5 and Mn is a PIC manifold. Then there is no free Abelian
subgroup of π1(M) of rank greater than 1.

Ideally from a variational point of view one may try the following type of argument. Assume
Z ⊕ Z ∈ π1(M), then there exists conformal minimal branched immersion u : T 2 → M such that
u∗ : π1(T 2)→ Z⊕ Z isomorphically. The question is, can we have stable tori in a PIC manifold?
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Unfortunately the answer is yes. For example one may take the Cartesian product S1 × Sn/Zp,
where Sn/Zp is the lens space with positive constant curvature. Clearly this gives a PIC manifold.
Then we may choose a shortest non-contractible geodesic γ in S3/Zp and S1 × γ will be a stable
tori.

Instead we are going to prove that if we take a sufficiently high degree cover of a stable tori, it
becomes unstable. Before proceeding to proof, we first recall that the complexified second variation
for energy functional implies for stable tori F : Σ→M , we haveˆ

Σ
R(Fz, s, Fz̄, s̄)dxdy ≤

ˆ
Σ
|∇z̄s|2dxdy, ∀s ∈ Γ(E), E = F ∗(NΣ⊗ C).

If further s is isotropic, then by the PIC condition we’ll have

κ

ˆ
Σ
|s|2dA ≤

ˆ
Σ
|∇z̄s|2dA.

We argue as following that when Σ is ’large’ enough this cannot happen.

Proof. The proof proceeds in a few steps. Step 1: For any kZ ⊕ kZ ⊂ π1(M) there is a branched
minimal immersion Σk representing kZ⊕ kZ.

Step 2: Suppose for now that for every ε > 0, there is a sufficiently large k and a smooth map
f : Σk → S2 satisfying deg f = 1 and |df | < ε.

We now use this ε-contracting map f to construct ’almost’ holomorphic sections of the bundle
E.

Definition 4.20. Let ε > 0. A section s ∈ Γ(E) is called ε-holomorphic if
´

Σ |∇z̄s|
2dA <

ε
´

Σ |s|
2dA.

A immediate consequence from the second variation formula is, if ε < κ then any ε-holomorphic
isotropic section s must vanish.

Now for the holomorphic bundle E over T 2, since the complex linearly expanded pairing (·, ·)
gives an isomorphism E → E∗, we have c1(E) = 0. Note that we are unable to obtain a section of
E since Riemann-Roch theorem only guarantees a section when c1(E) > 0. However if ξ is a line
bundle over T 2 with c1(ξ) = 2 then c1(ξ ⊗ E) > 0, hence we are able to get a bundle of ξ ⊗ E.

Take a line bundle L over S2 with c1(L) = 2, and let ξ = f∗(L). Then c1(ξ) = deg(f)c1(L) = 2.
Extend complex pairing (·, ·) to (ξ⊗E)×(ξ⊗E)→ ξ⊗ξ, denoted also by (·, ·), by (t1⊗s1, t2⊗s2) =
(s1, s2)t1⊗ t2. Also let H(ξ⊗E) be the space of holomorphic sections of ξ⊗E. Then by Riemann-
Roch,

dimH(ξ ⊗ E) ≥ c1(det(ξ ⊗ E)) = (n− 2)c1(ξ) + c1(E) = 2n− 4.

Step 3: We are ready to find a holomorphic isotropic section of ξ⊗E. By Riemann-Roch, if σ is
a holomorphic section such that (σ, σ) = 0 at more than 2c1(ξ) = 4 points, then (σ, σ) is identically
0. Define, Hx = {σ ∈ H(ξ ⊗ E) : (σ, σ)x = 0}. Note that dimC(H(ξ ⊗ E)) = d ≥ 2n − 4. Take
5 arbitrary points x1, . . . , x5 on T 2. We want to argue the intersection ∩5

j=1Hj is nonempty. Now

each Hj is defined by a homogeneous degree 2 polynomial on H(ξ ⊗ E) ≈ Cd, it can be viewed as

a (d− 2) dimensional hypersurface in CP d−2. By the intersection formula, we have

dim
(
∩5
j=1Hj

)
≥ d− 6 ≥ 2n− 10 ≥ 0, if n ≥ 5.

So there exists σ ∈ ∩5
j=1Hj . That means, (σ, σ) ≡ 0 in ξ ⊗ E.

Step 4: From σ obtained above we construct almost holomorphic isotropic section s of E.
Notice if τ∗ is a section of the dual bundle ξ∗ then τ∗(σ) = s is a section of E. Of course τ∗ is

not holomorphic and neither is s, but if we are able to construct τ∗ through pull back by f of a
section on L then by ε-contractibility of f the derivative of s = τ∗(σ) will be sufficiently small.

We look at the bundle L over S2. Let U+, U− be small open neighborhoods of the south and
north poles, and S+, S− be the southern and northern hemisphere. By contractibility of disk the
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bundle L∗ over U+, U− is trivial. Take t∗1 a trivialization of L∗ in S2 − U− such that |t∗1| = 1
pointwisely on S+. Then use cut-off function to extend t∗1 identically 0 on U−. Similarly define t∗2.
Then we can find sections t∗1, t

∗
2 ∈ Γ(L∗) such that 1 ≤ |t∗1| + |t∗2| ≤ 2 everywhere on S2. Define,

using the ε-contracting map f , τj = f∗(t∗j ), j = 1, 2. Then by the chain rule

|∇τ∗j | = |∇(t∗j ◦ f)| = |(∇f) ◦ (∇t∗j )| ≤ Cε.

Let sj = τ∗j (σ), j = 1, 2. Then we have

|s1|2 + |s2|2 = |τ∗1 (σ)|2 + |τ∗2 (σ)|2

= (|τ∗1 |2 + |τ∗2 |2)|σ|2

≥ |σ|2.

Therefore either
´

Σ |s1|2dA ≥ 1
2

´
Σ |σ|

2dA or
´

Σ |s1|2dA ≥ 1
2

´
Σ |σ|

2dA is true. We therefore get a
section s = s1 or s2 with ˆ

Σ
|s|2dA ≤ Cε

ˆ
Σ
|σ|2dA ≤ 2C

ˆ
Σ
|s|2,

which concludes the proof. �

The same method shows

Theorem 4.21. If Σ is a stable incompressible torus in κ-PIC manifold then a sufficiently high
degree covering of Σ is unstable.

Finally we prove the existence of the ε-contracting map f .

Theorem 4.22. Given u : T 2 →M with u∗(π1(T 2)) = kZ⊕kZ. Then there exists f : (T 2, u∗g)→
S2 with deg(f) = 1 and |df | < ε if k is sufficiently large.

Proof. For each k, denote by Σk the preimage of u. Recall the systole of Σk is defined by the
number

L = min{L(γ) : γ is a noncontractible closed geodesic in Σk}.
Since M is compact it is routine to check that for k large enough the surface Σk has large systole,
say, larger than L.

Look at the universal cover Σ̃ of Σ. Since Σ̃ is noncompact with compact quotient Σ, there is a
geodesic line r : R→ Σ̃. Choose T very large, T >> L and define D1 : Σ̃→ R by

D1(x) = d(x, r(T ))− T.

And define D2(x) to be the signed distance function to r such that D2 attains positive on one

component of Σ̃− r and negative on the other.
On the square region

Ω = {|D1| <
L

4
, |D2| <

L

4
},

define f : Ω → [−L
4 ,

L
4 ] × [−L

4 ,
L
4 ] by f = (D1, D2). Clearly f is a Lipschitz function, and with

proper choice of T , |df | < 2. Then the boundary of Ω is mapped into the boundary of the square of
length L/2 in R2. Also r(0) is the only point mapped to 0 in R2. Hence f is a local diffeomorphism,
and in particular, degree 1 map from a neighborhood of r(0) in Ω to one component of R2−f(∂Ω).

We then smooth f out to get a map f̃ from Ω→ BL/5(0) ⊂ R2, and compose f̃ with a contracting

map which takes BL/5(0) to Bπ(0). Finally, glue BL/5(0) to a punctured sphere S2 − q and map

the every point in the fundamental domain of Σ in Σ̄ to q, we obtain the desired map. �
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5. Positive scalar curvature

5.1. Positive curvature obstructing stability.

Theorem 5.1 (J. Simons, [Sim68]). There are no stable minimal submanifolds (of any codimen-
sion) in the round (Sn, g0).

Proof sketch. The idea is to think of Sn as being the unit sphere in Rn+1 and then use the ambient
Killing vector fields that represent isometries. If Vi, i = 1, . . . , n + 1, represents those ambient
Killing fields and Xi = (Vi)

t are their projections to the sphere, then one can show that on any
minimal Σk ⊂ Sn we have

n+1∑
i=1

δ2Σ(Xi, Xi) < 0

and therefore there can be no stable minimal surfaces. �

This result was later improved to work under much weaker regularity assumptions by Lawson
and Simons.

Theorem 5.2 (Lawson-Simons, [LS73]). There are no stable stationary integral currents, mod p
currents, or varifolds in the round sphere (Sn, g0).

Remark 5.3. Currents and varifolds don’t come equipped with a normal bundle, so variations
have to be considered in the ambient space and therefore stability is interpreted as the lack of
ambient flows that decrease mass.

Li and Yau showed in [LY82] that, in the case k = 2, the flow φt generated by one of the vector
fields Xi actually satisfies |φt(Σ)| < |Σ|, t 6= 0, provided Σ is not entirely contained in any equator
of Sn. Consequently, index(Σ2) ≥ n+ 1. El Soufi and Ilias handled the higher dimensional case in
[ESI92].

There is a conjecture that aims to generalized these stability obstructions to 1/4-pinched mani-
folds.

Conjecture 5.4 (Lawson-Simons conjecture). Let (Sn, g) be 1/4-pinched; i.e., 1/4 < K ≤ 1. Then
there exists no stable minimal Σk ⊂ Sn.

This is known to hold true in the following cases:

(1) when Σ ≈ S2, by Micallef-Moore, and
(2) when Σ is a hypersurface (i.e., codimension 1) in Sn (as we remark in the proposition

below),

but is otherwise open, even when Σ is a general two dimensional surface.

Proposition 5.5. There are no stable two-sided closed hypersurfaces in a manifold (Mn, g) with
positive Ricci curvature.

Proof. The second variation formula for a two-sided Σn−1 ⊂ Mn says that if ν is a unit normal
field to Σ, and we vary Σ along the direction X = ϕν, then

δ2Σ(ϕ,ϕ) =

ˆ
Σ
|∇ϕ|2 − (Ric(ν, ν) + |A|2)ϕ2 dµ.

Therefore if Ric > 0 and ϕ ≡ 1, we have

δ2Σ(1, 1) =

ˆ
Σ
−(Ric(ν, ν), |A|2) dµ < 0,

so Σ is unstable. �

Notice that from this we get the following:
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Corollary 5.6. If (Mn, g) is compact, Ric > 0, then Hn−1(M,Z) = 0.

Remark 5.7. This uses a hard result [FF60] on minimizing volume in homology classes. One
should view this as a sort of counterpart of Bochner’s theorem on the triviality of 1-dimensional
cohomology of closed manifolds with positive Ricci curvature.

The next thing to wonder about, instead of stability, is the geometry or topology of index 1
hypersurfaces. In particular, from min-max theory we know that every Riemannian manifold of
positive curvature has at least one index 1 hypersurface.

Question 5.8. Suppose Σn−1 ⊂Mn, K > 0, and that index(Σ) = 1. Can we bound the first Betti
number b1(Σ) ≤ c(n)?

This is known to hold true, for instance, in the following setting:

Theorem 5.9. If (M3, g) has positive Ricci curvature, then any Σ2 ⊂ M3 with index 1 has
genus(Σ) ≤ 3.

Remark 5.10. Conjecturally the genus bound genus(Σ) ≤ 3 can be improved to genus(Σ) ≤ 2, as
the study of Heegard splittings of 3-manifolds suggests.

It is remarkable that positive scalar curvature alone is enough to give very interesting stability
results, this being a consequence of the fact that on hypersurfaces the stability operator can be
written purely in terms of scalar curvature.

Proposition 5.11. If Σ is minimal then Ric(ν, ν) + |A|2 = 1
2(RM −RΣ + |A|2).

Proof. Choose an orthonormal basis e1, . . . , en−1, en = ν. Then

Ric(ν, ν)− 1

2
RM =

n−1∑
i=1

Rinni −
1

2

n∑
a,b=1

Rabba = −1

2

n−1∑
a,b=1

Rabba

(Gauss equation) = −1

2

n−1∑
a,b=1

[
RΣ
abba − haahbb + h2

ab

]
= −1

2
RΣ +

1

2
H2 − 1

2
|A|2.

So indeed when H = 0, Ric(ν, ν) + |A|2 = 1
2RM −

1
2RΣ + 1

2 |A|
2. �

As a result of this proposition, we can rewrite our stability operator as

δ2Σ(ϕ,ϕ) =

ˆ
Σ
|∇ϕ|2 − 1

2
(RM −RΣ + |A|2)ϕ2,

in which case we find that

Stability⇔ λ(−∆− 1

2
(RM −RΣ + |A|2)) ≥ 0.

5.2. Bonnet-type theorem.

Proposition 5.12. If RM ≥ κ > 0, then λ1(−∆Σ + 1
2RΣ) ≥ κ/2 for every stable Σ.

Proof. By stability, ˆ
Σ
|∇ϕ|2 ≥

ˆ
Σ

1

2
(RM −RΣ + |A|2)ϕ2

≥ κ

2

ˆ
Σ
ϕ2 − 1

2

ˆ
Σ
RΣϕ

2
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so ˆ
Σ
|∇ϕ|2 +

1

2
RΣϕ

2 ≥ κ

2

ˆ
Σ
ϕ2

for all ϕ ∈ C∞c (Σ), and the result follows. �

Corollary 5.13. When n = 3, Σ is a 2-dimensional surface with RΣ = 2KΣ, so the conclusion
above can be rewritten as λ1(−∆Σ +KΣ) ≥ κ/2.

We recall Bonnet’s theorem:

Theorem 5.14 (Bonnet’s theorem). Let (Σ2, g) be such that KΣ ≥ κ > 0. Then the length of any
stable geodesic is ≤ π/

√
κ. Consequently,

(1) If Σ is complete, then it is also compact with diam ≤ π/
√
κ.

(2) If Σ has boundary, then dist(p, ∂Σ) ≤ π/
√
κ for all p ∈ Σ.

Our goal is to show that this extends beyond surfaces with positive Gauss curvature, to surfaces
that satisfy the eigenvalue positivity condition λ(−∆ +K) ≥ κ/2.

Theorem 5.15. If (Σ2, g) satisfies λ(−∆Σ +KΣ) ≥ κ/2 > 0, then

(1) if Σ is complete, it must have diam ≤ 2π/
√
κ, and

(2) if Σ has boundary, then dist(p, ∂Σ) ≤ 2π/
√
κ for all p ∈ Σ.

Remark 5.16. We can no longer estimate the lengths of stable geodesics. Instead we will construct
a new functional on curves, and study stable critical points of that and provide upper bounds on
the (original) length. This will clearly bound the lengths of the optimal (original) geodesics.

Proof. Let u > 0 be the first eigenfunction of −∆Σ +KΣ, so that −∆Σu+KΣu = λu with λ ≥ κ/2.
We construct a compact 3-manifold M3 = Σ × S1 and endow it with a warped product metric

g + u2 dt2. By a calculation, we see that the scalar curvature R̃ of M3 satisfies

R̃ = 2KΣ − 2
∆Σu

u
= 2
−∆Σu+KΣu

u
≥ κ.

Let s 7→ γ(s) be any curve in Σ parametrized by arclength, s ∈ [0, `]. Note that γ × S1 is a surface
in M3, whose area is

area(γ × S1) =

ˆ `

0
u(γ(s)) ds , Lu(γ).

The functional Lu will be our new functional on curves of Σ. The result will follow once we establish
the following

Claim 5.17. Stable curves for Lu satisfy the Bonnet-type property ` ≤ 2π/
√
κ.

The stability inequality applied to the surface γ × S1 ⊂M3 yieldsˆ
γ×S1

[1

2
(R̃+ |Ã|2)− K̃

]
ϕ2 u dt ds ≤

ˆ
γ×S1

|∇̃ϕ|2 u dt ds.

We restrict to S1-invariant variations ϕ = ϕ(s). This way |∇̃ϕ|2 = (ϕ′)2 and the t-integrals drop

out. Estimating R̃ ≥ κ and |Ã| ≥ 0 we get:

κ

2

ˆ `

0
ϕ2 u ds+

ˆ `

0

u′′

u
ϕ2 u ds ≤

ˆ `

0
(ϕ′)2 u ds
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for all ϕ with ϕ(0) = ϕ(`) = 0. Since we don’t actually know what u is, our goal is to choose

ϕ that makes the u dependence disappear. To that end, we choose ϕ = u−1/2ψ for some ψ with
ψ(0) = ψ(`) = 0. The stability inequality becomes

κ

2

ˆ `

0
ψ2 +

ˆ `

0

u′′

u
ψ2 ≤

ˆ `

0

[
− 1

2
u−3/2u′ψ + u−1/2ψ′

]2
u.

Estimating the entire (non-negative) right hand side by its double, and expanding the square

κ

2

ˆ `

0
ψ2 +

ˆ `

0

u′′

u
ψ2 ≤ 2

ˆ `

0

1

4
u−2(u′)2ψ2 + (ψ′)2 − ψψ′u−1u′

(use ψψ′ =
1

2
(ψ2)′) =

ˆ `

0

1

2

(u′
u

)2
ψ2 + 2(ψ′)2 + ψ2

(u′′
u
− u′

u

)
and canceling the u′′ terms on the left and right hand sides, we conclude that

κ

2

ˆ `

0
ψ2 ≤ 2

ˆ `

0
(ψ′)2

and therefore that λ1(d2/dt2) ≥ κ/4 on the interval (0, `). But we know that λ1(d2/dt2) = π2/`2,
and the result follows. �

5.3. Some obstructions to positive scalar curvature. As an immediate corollary of the
Bonnet-type theorem we proved we get:

Corollary 5.18. Let (M3, g) have RM > 0. Then any closed stable minimal surface Σ2 ⊂ M3 is
necessarily diffeomorphic to S2 or RP2.

Proof. The universal cover Σ̃ of Σ is also a stable minimal immersion, and by the Bonnet-type

theorem it is in fact compact. By the classification of surfaces, Σ̃ ≈ S2 and the claim follows. �

Theorem 5.19. If M3 is compact and carries a metric g0 of non-positive sectional curvature, then
it cannot carry any metric of positive scalar curvature.

Proof. We argue by contradiction and assume that g were a metric of positive scalar curvature on
M3. By compactness, Rg ≥ κ and there exists C > 0 so that C−1g ≤ g0 ≤ Cg.

By Cartan-Hadamard, the universal covering space (M̃, g0) of (M, g0) is diffeomorphic to R3 via

the exponential map, and g0 ≥ δ. Therefore δ ≤ Cg on M̃ ≈ R3. This upper bound of the flat
metric δ in terms of the positive scalar curvature metric g will yield the contradiction.

Consider the x1x2 plane in R3, and the x3 axis which cuts it orthogonally. For R > 0, let CR be
the circle of radius R on the x1x2 plane. Any point q on the x3 axis satisfies dδ(q, CR) ≥ R, and
therefore dg(q, CR) ≥ R/C.

Solve the Plateau problem with metric g and boundary CR. For topological reasons, the g-
area minimizing disk Σ2 will intersect the x3 axis at some point q. By the previous estimate,
dg(q, CR) ≥ R/C → ∞ as R → ∞. However, our Bonnet-type theorem places a uniform upper
bound on dg(q, CR) in terms of κ. This contradicts the existence of g. �

In fact the following stronger result is also true provided the proof above is appropriately gener-
alized.

Theorem 5.20. Let (M3, g) be closed and with sectional curvature K ≤ 0. If M3
1 is closed and

there exists a map f : M1 → M of nonzero degree, then M1 has no metric of positive scalar
curvature.

Corollary 5.21. If M3 is as above and M3
0 is any closed manifold, then M#M0 cannot carry a

metric of positive scalar curvature.
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•q

x1x2 plane

x3 axis

CR

Σ2

Figure 3. Solving the Plateau problem, ∂Σ2 = CR.

5.4. Asymptotically flat manifolds and ADM mass. It turns out that the tools we’ve devel-
oped for positive scalar curvature in the compact setting can be used to understand certain complete
noncompact manifolds with nonnegative scalar curvature–namely, those which look approximately
Euclidean outside large compact sets.

Definition 5.22. We say that (Mn, g) is asymptotically flat of order p > n−2
2 if2 Rg = O(|x|−n−α)

for some α > 0, and there exists a compact K ⊂M such that M \K ≈ R3 \B1 so that under the
induced Euclidean coordinates x1, . . . , xn on M \ K, the metric g satisfies the fall-off conditions
gij = δij + αij with

|αij(x)|+ |x| |∂αij(x)|+ |x|2 |∂∂αij(x)| ≤ c |x|−p

for some c > 0.

Definition 5.23. For any manifold we define the ADM mass to be

m =
1

c(n)
lim
r→∞

ˆ
Sr

(gij,j − gjj,i)νidσ

where Sr represents the coordinate radius r sphere, νi = xi

|x| is the Euclidean outward unit normal,

and dσ the Euclidean volume element of Sr. The normalization constant c(n) above is chosen so
that

m

((
1 +

ms

2|x|n−2

) 4
n−2

δ

)
= ms.

For example, c(3) = 16π.

Example 5.24 (Schwarzschild metrics). The metrics

gm =

(
1 +

m

2|x|n−2

) 4
n−2

δ

we’re using to normalize our ADM mass definition are called (Riemannian) mass m Schwarzschild
metrics and correspond to static black hole solutions of the Einstein equations. The parameter m
reflects their “total mass.” Notice that for m = 0 we get flat Euclidean space, whereas for m < 0
the metrics we get are incomplete with a nonremovable singularity at x = 0.

2The most general requirement for scalar curvature is Rg ∈ L1, but we adopt this stronger decay assumption for
expository convenience.
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Proposition 5.25. All complete, rotationally symmetric and scalar flat metrics are conformally
flat and asymptotically flat:

g = u
4

n−2 δ

with
u = u(r) = 1 +

m

2rn−2

for some constant m ≥ 0. In other words, Schwarzschild metrics (for m ∈ R) are the only
rotationally symmetric and scalar-flat manifolds (without any asymptotic assumptions).

Proof. Rotational symmetry is characterized by metrics on Rn \ {0} (or Rn) given by g = dr2 +
f(r)2 gSn−1 . Notice that by changing coordinates it follows that every such g is conformally flat,
i.e.

g = u
4

n−2 δ

for some radial function u = u(r) > 0. Scalar flatness translates to ∆u = 0 with respect to the flat
metric, and since u is radial we have

∆u = 0⇔ 1

rn−1

∂

∂r

(
rn−1∂u

∂r

)
= 0

⇔ ∂u

∂r
=

b

rn−1
⇔ u = a+

b

rn−2
.

We may rescale so that a = 1, and therefore

u(r) = 1 +
m

2rn−2

for some m ∈ R, thus recovering the various Schwarzschild metrics. �

It’s not clear that the definition of ADM mass actually makes sense because it’s not clear that
the limit even exists. This is so because the integrand gij,j − gjj,i is only of order |x|−p−1, and
p + 1 > n/2 does not guarantee existence of the limit. Nevertheless, it is true that ADM mass is
well defined.

Lemma 5.26. The ADM mass m is well defined on asymptotically flat manifolds (Mn, g) of order
p > n−2

2 .

Proof of lemma. On the asymptotic flat chart we have

R = gij,ij − gjj,ii +O((g − δ)∂2g) +O((∂g)2).

Notice that the error terms are both of order |x|−2p−2 with 2p + 2 > n, so integrable. The scalar
curvature is also assumed to be integrable, soˆ

M\K
|gij,ji − gjj,ii| dµ <∞.

By the divergence theorem we have that for all r1 < r2 sufficiently largeˆ
Sr2

(gij,j−gjj,i)νidσ−
ˆ
Sr1

(gij,j−gjj,i)νidσ =

ˆ
Br2\Br1

div(gij,i−gjj,i) dx =

ˆ
Br2\Br1

(gij,ji−gjj,ii) dx

Therefore we the limit as r2 →∞ will exist by the dominated convergence theorem since we know
that gij,ji − gjj,ii ∈ L1(dµ) and we can exchange dµ with dx integration.

Finally we need to check the formula for scalar curvature. By computing in coordinates we know
that

Γkij =
1

2
gk`(g`i,j + gj`,i − gij,`) =

1

2
(gki,j + gkj,i − gij,k) +O((g − δ)∂g),

and since Rijk` = ∂Γ− ∂Γ + Γ2 + Γ2,

R = Γkii,k − Γkki,i +O((g − δ)∂2g)
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= gik,ki −
1

2
gii,kk −

1

2
gkk,ii +O((g − δ)∂2g) +O((∂g)2)

= gij,ji − gii,jj +O((g − δ)∂2g) +O((∂g)2)

as claimed. �

5.5. Positive mass theorem. Now, while we’ve just shown that ADM mass is well-defined, it’s
far from clear that it represents a non-negative quantity3. The positive mass theorem validates this
assertion:

Theorem 5.27 (Positive mass theorem). If (Mn, g) is complete and asymptotically flat with Rg ≥ 0
then m ≥ 0, and m = 0 if and only if (Mn, g) ∼= (Rn, δ).

In this section we proceed to check this theorem in the base case n = 3, though the steps that
hold true for all dimensions are performed in full generality. We present the proof as a sequence of
reductions. The plan is:

(1) Reduce to simpler asymptotic behavior at infinity, replacing our asymptotically flat manifold
with a so-called asymptotically conformally flat manifold that is also scalar-flat.

(2) Arguing by contradiction, reduce m < 0 to a manifold that is precisely Euclidean outside a
compact set.

(3) Argue that the manifold obtained above can be turned into a nonflat manifold ≈ T 3#M3
1

with non-negative scalar curvature, obtaining a contradiction and thus finishing the proof.

Throughout this proof we will make extensive use of the conformal Laplacian,

Lgu = ∆gu− cnRgu

where cn = n−2
4(n−1) (not to be confused with the ADM mass-normalizing factor c(n)). The signifi-

cance of the conformal Laplacian is that under a conformal change of metric u
4

n−2 g we have

(5.1) R(u
4

n−2 ) = −c−1
n u−

n+2
n−2Lgu.

Step 1. Simplification of asymptotics.

Definition 5.28. We say that a manifold (Mn, g) is asymptotically conformally flat if outside a

compact set we have g = u
4

n−2 δ with u → 1 at ∞. If such a manifold is additionally scalar flat,
then by (5.1) it follows that ∆u = 0.

Remark 5.29. If u is as above, then since it is harmonic on Euclidean space we know how to
expand it into spherical harmonics near infinity. The expansion is

u(x) = 1 +
A

2|x|n−2
+O(|x|1−n).

Proposition 5.30. If u is as above, then m(u
4

n−2 δ) = A.

Proof. This is just a calculation. �

Theorem 5.31. Let (Mn, g) be asymptotically flat with Rg ≥ 0. Then for every ε > 0 there exists
a metric ĝ that is asymptotically conformally flat, scalar flat, and with mĝ ≤ mg + ε.

Proof. First we check the following:

Claim 5.32. Without loss of generality we may assume that Rg ≡ 0.

3ADM mass can be negative: Schwarzschild metrics with m < 0 certainly have negative mass. To get non-
negativity we ought to impose particular conditions on the boundary of M3, or assume that there is no boundary.
We do the latter.
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Proof of claim. If Rg > 0 but is not identically zero, then we may solve the equation Lgu =
∆gu− c(n)Rgu = 0, u > 0, u→ 1 at infinity. (Some further analysis is required to show that this
can be done.) The solution u(x) of this PDE can be expanded as

u(x) = 1 +
a

2|x|n−2
+O2(|x|1−n)

for some a ∈ R. For r > 0 large we have

0 < c(n)

ˆ
Br

Rgu dVg =

ˆ
Br

∆gu dVg =

ˆ
∂Br

∂u

∂ν
dσg

=

ˆ
∂Br

[
−n− 2

2

a

|x|n−1
+O1(|x|−n)

]
dσg = −n− 2

2
|Sn−1|a

and therefore a < 0. Setting g̃ = u
4

n−2 g yields Rg̃ ≡ 0 and mg̃ = mg + a < mg. �

Now fix σ > 0 large and take a cut-off function χ(r) such that χ(r) = 1 for r ≤ σ, χ(r) = 0 for
r ≥ 2σ, 0 ≤ χ′(r) ≤ c/σ for σ ≤ r ≤ 2σ, |χ′′(r)| ≤ c/σ2 for σ ≤ r ≤ 2σ. Set

g̃ = χg + (1− χ)δ

where δ is Euclidean. This metric agrees with g in |x| ≤ σ and is Euclidean on |x| ≥ 2σ, so
asymptotically flat. Note that Rg̃ ≡ 0 except in the annulus σ ≤ |x| ≤ 2σ, where |Rg̃| = O(|x|−p−2).
Even though Rg̃ may not be non-negative, one can show with some analysis that we can uniquely
solve

Lg̃u = ∆g̃u+ c(n)Rg̃u = 0, u > 0, u→ 1 at infinity

provided
´
M |Rg̃|

n
2 dVg̃ is small enough. (This comes from the Sobolev inequality.) This is indeed

the case here since

|Rg̃| ≤ c|x|−p−2 ⇒ |Rg̃|
n
2 ≤ c′|x|

n
2

(−p−2)

and n
2 (p+ 2) > n(n+2)

4 > n for n ≥ 3, and we can therefore make the integral be sufficiently small
by sending the (still free) parameter σ →∞.

Having solved this equation, we may set ĝ = u
4

n−2 g̃, which is globally scalar flat, and asymptot-
ically conformally flat since g̃ = δ for |x| ≥ 2σ. Furthermore, as σ →∞ we get mĝ → mg. �

Why is this reduction desirable? If we can prove the positive mass theorem for these special
asymptotics, then we can prove the general case by arguing that if a metric g with mg < 0 were to
exist, we could find a nearby metric ĝ with the simplified asymptotics which also satisfies mĝ < 0,
a contradiction.

Step 2. An observation of Lohkamp and reduction to a compact problem.
Having reduced to asymptotically conformally flat asymptotics and zero scalar curvature, we

know that g = u
4

n−2 δ for some harmonic u. By expanding u along spherical harmonics near infinity
we have

u(x) = 1 +
m

2|x|n−2
+O2(|x|1−n),

where m is the ADM mass of the manifold because of Proposition 5.30.

Theorem 5.33. If in these asymptotics we have m < 0, then outside large compact sets we can
perturb g to another metric which has non-negative scalar curvature and is exactly Euclidean near
infinity.

Proof. Recall that ∆u = 0. We first make the observation that if ψ is any positive smooth concave

function, then ∆ψ(u) = ψ′(u)∆u+ ψ′′(u)|∇u|2 ≤ 0, so R(ψ(u)
4

n−2 δij) ≥ 0.
Now since we’re assuming m < 0, we know that for |x| large, u(x) approaches 1 from below.

Construct a smooth concave function ψ : R → R such that ψ is the identity on (−∞, 1 − ε),
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increasing, and ψ ≡ 1 − ε/2 on (1 − ε,∞). Then perturb g outside a large compact set to ĝij =

ψ(u)
4

n−2 δij . Evidently, ĝ = g in a compact region, ĝ is Euclidean near infinity, and Rĝ ≥ 0. �

Step 3. Obtaining a Tn#Mn
1 with R ≥ 0.

Having reduced to a manifold (Mn, g) with R ≥ 0 and which is Euclidean outside a compact set,
let C be a sufficiently large coordinate cube such that M \ C ≈ Rn \ B1. Then construct a new
manifold (M ′, g′) by periodically patching copies of C together. This manifold clearly has a free,
properly discontinuous Zn action, and therefore we can further construct

(M ′′, g′′) ∼= (M ′, g′)/Zn

to be a compact manifold with non-negative scalar curvature, which is topologically Tn#Mn
1 . Since

curvature is local in nature, the scalar curvature descends to this manifold and therefore we will
have produced a scalar non-negative Tn#Mn

1 .
Now we need to specialize to n = 3. Our goal is to further reduce to the setting of Corollary

5.21. This requires some general understanding of the variational theory of scalar curvature. To
that end, we need the following:

Definition 5.34. The total scalar curvature functional (also known as the Einstein-Hilbert func-
tional) is

R(g) =

ˆ
M
Rg dVg.

Theorem 5.35. If Mn carries no metrics of positive scalar curvature, then either we can perturb
any g with Rg ≥ 0 to have positive scalar curvature, or g satisfies Ricg ≡ 0

Proof. Let g0 have Rg0 ≥ 0. There are two cases to consider.
The first case is the one in which Rg0 > 0 at some point. Let u > 0 be the first eigenfunction

of Lg0 and λ ∈ R the corresponding eigenvalue. Since Rg0 ≥ 0, but does not vanish identically,
it follows that λ = λ(Lg0) ≥ 0. In fact, λ > 0 because otherwise the first eigenfunction u > 0
of Lg0 would be superharmonic on Mn, so constant, so Rg0 would be constant, so zero–which is

false. Therefore λ > 0, so R(u
4

n−2 g0) = −c−1
n u−

n+2
n−2 (−λ)u > 0. This is also impossible, since we’re

assuming that Mn cannot carry positive scalar curvature.
The second case to consider is that of Rg0 ≡ 0. We need to check that Ricg0 ≡ 0. Consider an

arbitrary variation gt = g0 + th, and set λ(t) = λ0(−Lgt). We know that λ(t) is smooth, λ(t) ≤ 0,
and λ(0) = 0. So λ′(0) = 0.

For every t near 0, let ut be the first eigenfunction of Lgt normalized to have
´
M u2

t dVgt = V (g0),
so that u0 = 1. Then

V (g0)λ(t) =

ˆ
M
|∇ut|2 + c(n)Rgtu

2
t dVgt

and differentiating in t at t = 0,

0 = V (g0)λ′(0) = c(n)

ˆ
M

[
d

dt
Rgt

]
t=0

dVg0

= c(n)

ˆ
M

(gij)·Rij + gijṘij dVg0

= c(n)

ˆ
M
〈−h,Ricg0〉 dVg0

where the second term has dropped off because it is a boundary term and ∂M = ∅. Therefore,
〈−h,Ricg0〉 = 0 for all perturbations h, so Ricg0 = 0.

Alternatively, the second case can also be seen to hold true by Ricci flow. If Rg0 ≥ 0, then
running Ricci flow for a short time would deform a non-Ricci flat g0 to positive scalar curvature,
which is impossible, so g0 is Ricci flat. �
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Remark 5.36. There do exist nontrivial Ricci-flat metrics on manifolds which don’t admit any
positive scalar curvature metrics: K3 manifolds are such an example. Furthermore, Calabi-Yau
manifolds are examples in 6 dimensions of Ricci-flat metrics which are not perturbable to positive
scalar curvature metrics, although the background manifold does carry such metrics.

This theorem is closely related with the following trichotomy theorem:

Theorem 5.37 (Trichotomy theorem). Let (Mn, g), n ≥ 3, and [g] = {e2ug : u ∈ C∞(Mn)}.
Then:

(1) [g] contains a metric with R > 0 if and only if λ(−L) > 0.
(2) [g] contains a metric with R ≡ 0 if and only if λ(−L) = 0.
(3) [g] contains a metric with R < 0 if and only if λ(−L) < 0.

Now we return to the positive mass theorem. By applying Theorem 5.35 in combination with
Corollary 5.21 when n = 3, we conclude that the compact manifold T 3#M3

1 we have constructed
(by assuming m < 0, by way of contradiction) must in fact be Ricci flat. But of course Ricci flat
metrics are flat when n = 3, so our original metric must have been flat, which contradicts that
m < 0.

Remark 5.38 (Higher dimensions). There are two parts of the proof that don’t immediately
generalize to arbitrary dimensions as stated: the fact that Tn#Mn

1 doesn’t carry scalar positive
metrics (which we only checked for n = 3), and the fact that g being Ricci flat implies that the
original background manifold is flat (this is trivial when n = 3).

In fact, only the first of those statements is nontrivial. The second statement follows from the
general fact that every asymptotically flat and Ricci flat manifold (Mn, g) is necessarily Euclidean
as one can see, for example, by volume comparison on large balls.

The second statement is known to hold true up to n ≤ 7 via an inductive argument that reduces
to the 3-dimensional case, and by a theorem of Smale ([Sma93]) and some additional modifications
can likely be adapted to n = 8 as well. For larger n there are hard technical obstacles in the minimal
surface proof, but it has been shown by Witten ([Wit81], [PT82]) through the use of spinors that
the positive mass theorem holds true for all (Mn, g) in all dimensions, provided Mn admits a spin
structure.

5.6. Rigidity case. We have yet to prove the rigidity case of the positive mass theorem. It follows
from the following observation that works in all dimensions.

Theorem 5.39 (Rigidity case of PMT). Assume m ≥ 0 for every asymptotically flat (Mn, g) with
R ≥ 0. If (Mn, g) has m = 0, then (Mn, g) ∼= (Rn, δ).

Proof. If R > 0 at some point then we can solve Lu = 0, u→ 1 at ∞, and show that

m(u
4

n−2 g)−m(g) = −c(n) lim
r→∞

ˆ
Sr

∂u

∂ν
dσ = −

ˆ
M

∆gu dVg = m(g)−
ˆ
M
Rg dVg < 0.

We have already shown that m(u
4

n−2 g) ≥ 0, so m(g) > 0, a contradiction.
So we can assume that R ≡ 0. Let h be a C∞c symmetric (0, 2)-tensor, and gt = g + th. The

metrics gt are still asymptotically flat, and in fact coincide with g at infinity. Of course, these
metrics don’t satisfy R ≥ 0 anymore. For t small, let ut > 0 be such that Lut = 0, ut → 1 at

infinity (which we can indeed solve, like we did in Claim 5.32). Then define ĝt = u
4

n−2

t gt, which
satisfy R(ĝt) ≡ 0. Observe, further, that u0 ≡ 1 and ĝ0 = g.

Define m̂(t) = m(ĝt), and observe that

m̂(t) = −c(n) lim
r→∞

ˆ
Sr

∂u

∂ν
dσt = −c(n)

ˆ
M

∆gtut dVt = −c(n)

ˆ
M
Rgtut dVt.
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This is differentiable in t and we know by assumption that m̂(t) ≥ 0, with m̂(0) = m(g0) = 0, so
m̂′(0) = 0. We can also compute m̂′(0) by differentiation, which gives

0 = m̂′(0) = −c(n)

ˆ
M
〈h,Ricg〉 dVg.

Recall that h were an arbitrary symmetric (0, 2)-tensor, and conclude that g is Ricci flat, thus flat
by remark 5.38. �

6. Calibrated geometry

6.1. Definitions and examples.

Definition 6.1. A smooth p-form ϕ on a Riemannian manifold (M, g) is called a calibrating
form or simply a calibration if it is closed (i.e. dϕ = 0) and satisfies

(6.1) ϕx(ξ) ≤ 1,∀ x ∈M and ∀ ξ ∈ Gp(TxM),

where we denote by Gp(V ) the set of all simple, unit length p-vectors in ∧pV , which can be identified
with the set of oriented p-planes in V .

Definition 6.2. Given a calibration ϕ and x ∈M , the contact set at x is defined to be

(6.2) {ξ ∈ Gp(TxM)|ϕx(ξ) = 1}.

Definition 6.3. Given a calibration ϕ, a p-dimensional submanifold Σp is called ϕ−calibrated,
or just calibrated, if

(6.3) ϕx(TxΣ) = 1, ∀ x ∈ Σ.

Remark 6.4. Note that a calibrated submanifold is automatically oriented because ϕ restricts to
a volume form.

One of the most important properties of calibrated submanifolds is that they minimize area in
their relative homology class. More precisely, we have the following theorem.

Theorem 6.5. Suppose Σ is ϕ-calibrated and let Σ0 be another oriented p-submanifold with ∂Σ0 =
∂Σ. Then |Σ| ≤ |Σ0|.

Proof. By assumption we can write Σ−Σ0 = ∂Rp+1. Then by Stokes’ theorem and the closedness
of ϕ, we get

0 =

ˆ
R
dϕ =

ˆ
Σ−Σ0

ϕ

=

ˆ
Σ
ϕ−
ˆ

Σ0

ϕ.

Therefore

|Σ| =
ˆ

Σ
ϕ =

ˆ
Σ0

ϕ ≤ |Σ0|.

The first equality is due to the fact that Σ is calibrated, while the third equality follows from
(6.1). �

Before we go on let’s give some examples of calibrations and calibrated submanifolds.

Example 6.6.

(1) Let Ω ∈ M be an open subset and let r be a smooth function with |∇r|g = 1. Then the
integral curves of ∇r are length-minimizing.
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Proof. Consider the 1-form dr, which is certainly closed. Moreover, for all x ∈ Ω and each
unit vector v ∈ TxM ,

dr(v) = g(∇r, v) ≤ 1,

with equality holding if and only if v = ∇. This shows that dr is a calibration and the
integral curves of ∇r are calibrated. �

(2) Suppose u is a solution to the minimal surface equation in Ω ∈ Rn and let Σ ∈ Rn+1 denote
the graph of u. Then Σ is calibrated in Ω× R.

Proof. Take an orthonormal frame e1, . . . , en+1 with e1, . . . , en tangent to Σ and en+1 nor-
mal. Let w1, . . . , wn+1 be the dual co-frame. Let ϕ = w1 ∧ · · · ∧wn and extend ϕ to Ω×R
so that it does not depend on xn+1. The minimal surface equation implies that ϕ is closed.
Moreover, (6.1) is satisfied since ϕ is a wedge product of 1-forms dual to unit vectors.
Finally, Σ is ϕ-calibrated because ϕ restricts to the volume form on Σ by construction. �

(3) More generally, if we have a foliation of a Riemannian manifold Mn by hypersurfaces, and
if at each x ∈ M we define ϕx to be the volume form of the leaf containing x, then ϕ is
closed if and only if each leaf is a minimal hypersurface.

(4) Consider a Kähler manifold (M2n, g, J) and recall that the Kähler form is defined by
ω(X,Y ) = g(JX, Y ). The simplest example of a Kähler manifold is R2n with the stan-
dard complex structure J , i.e.

(6.4) J(
∂

∂xj
) =

∂

∂yj
; J(

∂

∂yj
) = − ∂

∂xj
.

Letting

(6.5) dzj = dxj + idyj , dzj = dxj − idyj ,

we find that the Kähler form in this case is

ω =
i

2

n∑
j=1

dzj ∧ dzj .

Now let’s return to the general situation and fix p ≤ n. Define a 2p-form on M2n by
ϕ = 1

p!ω
p. Then ϕ is a calibration and the calibrated submanifolds are exactly the complex

submanifolds.

Proof. First note that since M is Kähler, dω = 0 and hence ϕ is closed. Next we verify
(6.1). More precisely, for any x ∈M we claim that

(6.6)
1

p!
wp(ξ) ≤ 1,∀ ξ ∈ G2p(TxM) (Wirtinger’s inequality)

with equality holding if and only if ξ represents a complex p-plane (J-invariant oriented
real 2p-plane). The case p = 1 is already handled in Proposition 3.2, so we can assume
that p ≥ 2. For ξ ∈ G2p(TxM), let E denote the oriented 2p-plane represented by ξ. Since
ω(X,Y ) = g(JX, Y ) we can view ω as a non-degenerate skew-symmetric bilinear form on
E. By linear algebra we can find a positive basis e1, f1, . . . , ep, fp of E such that

ω(ei, ej) = ω(fi, fj) = 0, ω(ei, fj) = λiδij
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Furthermore, up to re-ordering we can assume that λ1 ≥ λ2 ≥ · · · ≥ λp and that λp−1 ≥ 0.
Then, with respect to the basis {e1, f1, . . . , ep, fp}, ω is represented by the matrix

0 λ1

−λ1 0
. . .

. . .


In other words, letting {θi} and {τ i} be dual to {ei} and {fi} respectively, we have

ω =

p∑
i=1

λiθ
i ∧ τ i.

Hence, noting that 2-forms commute, we deduce that

(6.7) ϕ =
1

p!
wp = (λ1λ2 · · ·λp)θ1 ∧ τ1 ∧ · · · ∧ θp ∧ τp = (λ1λ2 · · ·λp)ξ[

Now notice that since ei, fi have unit length,

λi = ω(ei, fi) = g(Jei, fi) ≤ 1

Hence by (6.7), we see that

ϕ(ξ) ≤ 1,

with equality holding if and only if λ1 = · · · = λp = 1, in which case we have

g(Jei, fi) = ω(ei, fi) = 1.

Thus by the equality case of Cauchy-Schwarz inequality, we conclude that Jei = fi and
hence Jξ = ξ, i.e. ξ represents a complex p-plane. �

Remark 6.7.

(1) Concerning example (3), it is worth noting that if we have a foliation F of an n-manifold
M by p-dimensional minimal submanifolds where n − p ≥ 2, then in general the p-form
ϕ constructed by the same procedure will not be closed. Nonetheless, if we have a p + 1-
submanifold N that is tangent to F , i.e. F restricts to a foliation of N , then ϕ|N is closed.

(2) An interesting question is that given a p-dimensional oriented foliation of a compact n-
manifold M , can we equip M with a Riemannian metric so that the leaves of the foliation
become minimal submanifolds? In this direction, Dennis Sullivan proved that the answer
is yes if and only if the foliation is ”homologically taut”. See [Sul79] for details.

Remark 6.8. Example (4) shows that any complex submanifold of a Kähler manifold minimizes
volume and is thus stable minimal. The theorem of Micallef [Mic84] that we presented earlier shows
that the converse is true in some cases. Below we list two more results in this direction.

Theorem 6.9. (Lawson-Simons, [LS73]) Any stable minimal submanifold Σ2p of CPn is ± holo-
morphic.

Theorem 6.10. (Siu-Yau, [SY80]) Every stable minimal S2 in a compact Kähler manifold with
positive bisectional curvature is ± holomorphic.
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6.2. The Special Lagrangian Calibration. We now introduce another calibration of great geo-
metric interest; namely the special Lagrangian calibtration. We take (R2n, J), which has the
structure of an n-dimensional vector space over C, as our ambient space, although the calibration
makes sense under more general settings.

Before we go on, let us recall some facts from complex linear algebra. As in the previous section,
on (R2n, J) we introduce coordinates so that (6.4) holds and define dzj , dzj as in (6.5). An R-linear
map of R2n to itself is said to be complex if it commutes with J , in which case it becomes a C-linear
map of (R2n, J) ' Cn. Thus, a complex linear map A can be represented either as a (2n× 2n)-real
matrix of an (n × n)-complex matrix. If we let detA and detCA denote the determinants of the
two matrices, respectively, then we have the following relation whose proof will be given after the
next paragraph.

Lemma 6.11. detA = | detCA|2

The unitary group, denoted U(n), is defined to be

(6.8) {A ∈ O(2n)|AJ = JA}
Elements in U(n) have the property that they preserve both the inner-product on R2n and the
Kähler form. Moreover, by Lemma 6.11, for all A ∈ U(n) we have |detCA| = 1 and we define the
special unitary group as

(6.9) SU(n) = {A ∈ U(n)|det
C
A = 1}.

Proof of Lemma 6.11. With respect to the R-basis { ∂
∂x1

, · · · , ∂
∂xn , · · · ,

∂
∂yn } of R2n, we have

J =

[
0 −In
In 0

]
.

Thus, since A commutes with J , it must have the following form with respect to the same basis as
above:

A =

[
α β
−β α

]
It is then not hard to see that the complex (n × n)-matrix representing A is exactly α + iβ.
Performing some column operations, we find that

detA = det

[
α β
−β α

]
= det

[
α+ iβ β
−β + iα α

]
= det

[
α+ iβ 0

0 α− iβ

]
= det(α+ iβ) det(α− iβ) = | det(α+ iβ)|2 = |detCA|2

�

Definition 6.12. Given ξ ∈ Gn(R2n), let L be the oriented n-plane it represents. L is called a
Lagrangian plane if

(6.10) ξ = A(
∂

∂x1
∧ · · · ∧ ∂

∂xn
), for some A ∈ U(n).

ξ is called a special Lagrangian plane if (6.10) holds for some A ∈ SU(n). A submanifold
Σn ⊆ R2n is said to be a Lagrangian (special Lagrangian, resp.) submanifold if TxΣ is a Lagrangian
(special Lagrangian, resp.) plane for each x ∈ Σ.

For the discussions to follow it will be useful to know some alternative characterisations of

Langrangian planes. Recall that the Kähler form ω on (R2n, J) is given by ω = i
2

n∑
j=1

dzj ∧ dzj =

n∑
j=1

dxj ∧ dyj .
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Lemma 6.13. Let ξ and L be as in Definition 6.12. The following are equivalent:

(a) ω(X,Y ) = 0, ∀, X, Y ∈ L
(b) The 1-form

n∑
j=1

yjdxj is closed on L.

(c) J(L) = L⊥.
(d) ξ = A( ∂

∂x1
∧ ∂
∂xn ) for some A ∈ U(n).

(e) |dz(u1 ∧ · · · ∧ un)| = 1, where {u1, · · · , un} is an orthonormal basis of L.
In the case where L is the graph of a linear function f : Ω→ Rn, with Ω simply-connected,
the above are equivalent to

(f) f = ∇u, with u quadratic.

Proof.

(1) ((a)⇔ (b)) Simply note that d(
∑
yjdxj) = −ω.

(2) ((a) ⇔ (c)) Since ω(X,Y ) = 〈JX, Y 〉, (a) holds if and only if JX ⊥ Y, ∀X,Y ∈ L, which
is exactly (c).

(3) ((d) ⇒ (a)) Condition (d) implies that
{
A( ∂

∂xj
)
}n
j=1

is an orthonormal basis for L. More-

over, since A ∈ O(2n) and commutes with J , we have that

ω(A(
∂

∂xj
), A(

∂

∂xk
)) = ω(

∂

∂xj
,
∂

∂xk
) = 〈 ∂

∂yj
,
∂

∂xk
〉 = 0,

for all 1 ≤ j, k ≤ n. Thus (a) holds.
(4) ((c) ⇒ (d)) Let {u1, u2, · · · , un} be an orthonormal basis for L. Then by assumption
{u1, u2, · · · , un, Ju1, · · · , Jun} is an orthonormal basis for R2n. This implies that there
exists A ∈ U(n) such that A( ∂

∂xj
) = uj . Clearly ξ = A( ∂

∂x1
∧ · · · ∧ ∂

∂xn ).
(5) ((e) ⇔ (d))) Let {u1, · · · , un} be an orthonormal basis for L. Then there is a unique

complex linear map A with A( ∂
∂xj

) = uj , i.e. ±ξ = u1 ∧ · · · ∧un = A( ∂
∂x1
∧ · · · ∧ ∂

∂xn ). Since

A(
∂

∂xk
) = uk = dxj(uk)

∂

∂xj
+ dyj(uk)J

∂

∂xj

= (dxj + idyj)(uk)
∂

∂xj
= dzj(uk)

∂

∂xj
,

the complex matrix representation of A is given by [dzj(uk)]. Thus,

(6.11) dz(u1 ∧ · · · ∧ un) = det[dzj(uk)] = det
C
A

On the other hand, since A( ∂
∂yj

) = Juj , the real matrix representation of A is given by | | | |
u1 · · · un Ju1 · · · Jun
| | | |

 .
Using lemma 6.11, we see that

|dz(u1 ∧ · · · ∧ un)|2 = | det
C
A|2 = detA

≤ |u1| · · · |un||Ju1| · · · |Jun| = 1,(6.12)

with equality holding if and only if {u1, · · · , Jun} is an orthonormal basis for R2n, in which
case A ∈ U(n).

(6) ((b)⇔ (f) in the graphical case) By assumption, L = {(x, f(x))|x ∈ Ω} and (b) translates
into

d(
n∑
j=1

fjdx
j) = 0.
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Since Ω is simply-connected, this is equivalent to the existence of a function u on Ω such
that fj = ∂u

∂xj
, i.e. f = ∇u. Since f is linear, u must be quadratic.

�

Remark 6.14. The proof for (b)⇔ (f) in the graphical case also shows that if Σn is an oriented
n-submanifold of R2n which is the graph of a function f : Ω → Rn with Ω simpy-connected, then
Σ is Lagrangian if and only if f = ∇u for some u : Ω→ R.

Now we introduce the special Lagrangian calibration, defined by

(6.13) ϕ = Re(dz)

Theorem 6.15. ϕ is a calibration and the calibrated submanifolds are exactly the special Lagrangian
submanifolds.

Proof. Apparently ϕ is closed. Moreover, given ξ ∈ Gn(R2n), if we assume ξ = u1 ∧ · · · ∧ un
(i.e. {u1, · · · , un} is a positive orthonormal basis of L) and let A be the complex linear map with
A( ∂

∂xj
) = uj , then by (6.11) and (6.12),

ϕ(ξ) = Re dz(ξ) = Re det
C
A ≤ |det

C
A| ≤ 1,

with equality holding if and only if detCA = 1, which by (6.12) and (6.9) is equivalent to A ∈ SU(n).
Thus we’ve shown that ϕ is a calibration and ϕ restricts to the volume form of ξ if and only if ξ
represents a special Lagrangian plane. Recalling definition 6.12, the proof is complete. �

Remark 6.16. Fix θ ∈ R, the form

ϕθ = Re(e−iθdz)

is also a calibrating form. The contact set consists of the planes ξ = A( ∂
∂x1
∧ · · · ∧ ∂

∂xn ) where

A ∈ U(n) with detA = eiθ. Submanifolds calibrated by ϕθ are called special Lagrangian with
phase θ.

As mentioned in Remark 6.14, given a graphical Lagrangian submanifold Σn = graph(f) over
some simply-connected domain Ω, we can find u : Ω → R so that f = ∇u. We now derive the
associated PDE satisfied by u in the case Σ is special Lagrangian.

Since Σ is the graph of ∇u, we know that at each x ∈ Σ, if we let

vj =
∂

∂xj
+ ukj

∂

∂yk
,

then v1 ∧ · · · ∧ vn is a real multiple of the unit simple n-vector ξ representing TxΣ. Now by Lemma
6.13 we know that dz(ξ) is a unit complex number for x ∈ Σ. Thus by Definition 6.12, Σ is special
Lagrangian with respect to some orientation if and only if dz(ξ) = ±1, or equivalently,

Im(dz(ξ)) = 0⇔ Im(dz(v1 ∧ · · · ∧ vn)) = 0⇔ Im det(dzj(vk)) = 0

⇔ Im det(I + iD2u) = 0(6.14)

Recalling the following identity

det(I + tB) = 1 + t tr(B) + · · ·+ tkσk(B) + · · ·+ tn det(B),

where σk(B) denotes the k-th elementary symmetric polynomial in the eiganvalues of B, (6.14) is
equivalent to

(6.15)

[n−1
2

]∑
k=0

(−1)kσ2k+1(D2u) = 0.
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If we diagonalize D2u at a point and let λ1, . . . , λn be the eigenvalues, (6.14) becomes

Im(

n∏
k=1

(1 + iλk)) = 0⇔
n∑
k=1

tan−1 λk ≡ 0 mod π

6.3. Varitational Problems for (special) Lagrangian Submanifolds. First we give an inter-
esting characterization for special Lagrangian submanifolds with some phase θ.

Proposition 6.17. Let Σn be a connected Lagrangian submanifold of R2n. Then Σ is calibrated
by ϕθ for some θ if and only if Σ is minimal.

Proof. By Theorem 6.13, the Lagrangian condition implies that there exists θ : Σ→ R/2πZ so that

dz(TxΣ) = eiθ(x), ∀x ∈ Σ.

Locally there exists a lift θ̃ of θ to an R-valued function, and the following identity holds

(6.16) H = J(∇θ̃),
where H denotes the mean curavture vector of Σ. A proof of this will be given at the end. It
follows that, by connectedness, H = 0 if and only if θ is constant, which is equivalent to Σ being
calibrated by some ϕθ0 .

Now we prove (6.16). The key fact is that dz is a parallel (n, 0)-form on R2n. Since Σ is La-
grangian, by Theorem 6.13 we can choose a local orthonormal frame e1, . . . , en so that {ek, Jek}nk=1

is an orthonormal basis for R2n. Moreover, we can assume that the tangent components of ∇ejek
vanish at a point. Now for each j, we compute

ej(dz(e1, . . . , en)) =
n∑
k=1

dz(. . . ,∇ejek, . . . )

=
n∑
k=1

(∇ejek · Jek)dz(e1, . . . , Jek, . . . , en)

=
n∑
k=1

i(∇ejek · Jek)dz(e1, . . . , ek, . . . , en)

= i

(
n∑
k=1

∇ejek · Jek

)
dz(e1, . . . , en).

Note that by the symmetries of the second fundamental form, the term in parentheses is exactly
H · Jej . On the other hand,

ej(dz(e1, . . . , en)) = ej(e
iθ̃) = iej(θ̃)dz(e1, . . . , en)

= i(∇θ̃ · ej)dz(e1, . . . , en).

Comparing the two computations above, we get for each j,

H · Jej = ∇θ̃ · ej ⇐⇒ H = J(∇θ̃).
�

Remark 6.18. Given a function h : Σ → R, the associated Hamiltonian vector field is given
by

Xh = J∇h
and has the nice property that LXh

ω = 0, i.e. ω is preserved by the flow generated by Xh. From
this and (6.16), we deduce that the mean curvature vector is locally Hamiltonian and thus the
mean curvature flow preserves the Lagrangian condition.
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Proposition 6.17 suggests that in order to produce a special Lagrangian submanifold in a ho-
mology class, we can try minimizing volume among homologous Lagrangian competitors. More
precisely, we consider the following variational problem, which makes sense in any Kähler manifold
M2n:

Given a class [Σ0] ∈ Hn(M2n,Z) with Σ0 Lagrangian, find Σ ∈ [Σ0] such that

|Σ| = inf{|Σ′||Σ′ ∈ [Σ0],Σ′ Lagrangian}.
By Remark 6.18, any sufficiently regular solution to the Lagrangian Plateau problem must be

minimal, for if not, then by the remark, the variation generated by H = J(∇θ) would produce a
homologous Lagrangian submanifold with less volume.

Now we turn our focus to a more general setting, that is, minimal Lagrangian submanifolds of a
Kähler manifold.

Suppose (M2n, g, J) is a Kähler manifold, Σn ⊂ M2n is a Lagrangian submanifold. Remember
that if we take e1, . . . , en to be a basis of the real tangent space TxΣ, then Je1, . . . , Jen is a basis
of the normal bundle of Σ. The second fundamental form is given by

hkij = 〈∇eiej , Jek〉.
Now by a simple calculation,

hkij = 〈∇eiej , Jek〉 = −〈ej ,∇ei(Jek)〉 = 〈Jej ,∇eiek〉 = hjik.

So hkij = hikj = hjik.

On Σ, let θH = (JH)# be the 1-form dual to JH, where H is the mean curvature vector. Also
define a 2-form ρ such that ρ(X,Y ) = Ric(JX, Y ). Then we have the following relationship between
these forms.

Proposition 6.19. d(θH) = 1
2ρ|Σ.

Proof. Let e1, . . . , en, Je1, . . . , Jen be a basis normal at one point, η1, . . . , ηn be dual 1-forms of
e1, . . . , en. Then θH =

∑
i h

k
iiηk. So

dθH = ∇jhkiiηj ∧ ηk =
1

2
(∇jhkii −∇kh

j
ii)ηj ∧ ηk

=
1

2
(∇jhiki −∇khiji)ηj ∧ ηk

=
1

2
(ej〈∇ekei, Jei〉 − ek〈∇ejei, Jei〉)ηj ∧ ηk

=
1

2
〈RM (ej , ek)ei, Jei〉ηj ∧ ηk

=
1

2
Ric(Jej , ek)ηj ∧ ηk

=
1

2
ρ

∣∣∣∣
Σ

.

The last step can be done as following: for any two tangent vectors X,Y ,

Ric(X, JY ) =
∑

R(X, ei, ei, JY ) +R(X, Jei, Jei, JY )

=
∑
−R(X, ei, Jei, Y ) +R(X,Jei, ei, Y )

=
∑

R(X,Y, ei, Jei),

by the first Bianchi identity. �

Definition 6.20. We call a Kähler manifold (M2n, g) Kähler-Eistein, if there is some constant c
such that ρ = cω where ρ is the Ricci form and ω the Kähler form.
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Corollary 6.21. If (M2n, g) is Kähler-Einstein and Σn is a Lagrangian submanifold, then dθH = 0.
In particular, mean curvature flow starting from Σ perserves Lagrangian condition.

Corollary 6.22. If (M2n, g) is Kähler-Einstein and Σn is regular submanifold, and Σ is stationary
for volume among Lagrangian deformation, then HΣ = 0. That is, Σ is stationary for volume for
all deformations.

Proof. Consider the mean curvature flow from Σ. By the short time existence for mean curvature
flow for regular submanifolds, we get a family Σt of submanifolds. By the previous corollary each
Σt is Lagrangian. Therefore from the Lagrangian stationary condition we know

d

dt

∣∣∣∣
t=0

|Σt| = 0.

On the other hand,
d

dt

∣∣∣∣
t=0

|Σt| = −
ˆ

Σ
|H|2dµ.

Therefore we conclude H ≡ 0 on Σ. �

Definition 6.23. A manifold (M2n, g, J) is called Calabi-Yau, if it’s Kähler and there exists a
nonzero parallel (n, 0) form.

On a Calabi-Yau manifold we can always write the parallel (n, 0) form as α = f(z)dz1∧ . . .∧dzn
in local holomorphic coordinates, with ∇α = 0. We also normalize α so that ‖α‖ = 2n/2.

Proposition 6.24. Suppose Σn ⊂M2n is Lagrangian submanifold in a Calabi-Yau manifold. Then
α|Σ = eiβdVolΣ, where β is a function satisfying dβ = θH .

Proof. Again take an orthonormal basis e1, . . . , en, Je1, . . . , Jen. Then

ej (α(e1, . . . , en)) = (∇ejα)(e1, . . . , en) +
n∑
k=1

α(e1, . . . ,∇ejek), . . . , en)

=
n∑

k,l=1

α(e1, . . . , h
l
jkJel, . . . , en)

=
∑
k

ihkjkα(e1, . . . , ek, . . . , en)

= iHjα(e1, . . . , en).

Suppose locally we have a function β so that α(e1, . . . , en) = eiβ. Then ej(e
iβ) = iHjeiβ immedi-

ately gives βj = Hj . �

Now if in addition H ≡ 0 on Σ, then β is a constant.

Corollary 6.25. Suppose M2n is Calabi-Yau manifold, Σn ⊂ M2n is a submanifold. Then Σ is
Lagrangian and minimal if and only if Σ is calibrated by Re(e−iθ0α) for some θ0.

When people study minimal Lagrangian submanifold of Kähler manifolds, there are three classes
of Lagrangian manifolds that often come into play.

(1) Hamiltonian stationary submanifolds. Σ ⊂ M is called Hamiltonian stationary, if for any
compactly supported function h ∈ C∞c (M), we have δXh

Σ = 0, where Xh = J(∇h) is
the Hamiltonian vector field associated to h. If Σ is Hamiltonian stationary, then by first
variation formula, we have

δXh
Σ =

ˆ
Σ

divΣ(Xh)
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= −
ˆ

Σ
〈Xh, H〉

= −
ˆ

Σ
J(∇h), H〉

=

ˆ
Σ
〈∇h, JH〉

=

ˆ
Σ
〈dh, θH〉.

Therefore δXh
Σ = 0 for all compactly supported smooth h if and only if δθH = 0.

Note that on a Kähler-Eistein manifold we already dθH = 0 for Lagrangian submanifold
Σ. So Σ being Hamiltonian stationary is equivalent to θH being harmonic.

(2) Lagrangian stationary. We call Σ Lagrangian stationary if it is a critical point for any
smooth deformation through Lagrangian submanifolds. That is,

d

dt

∣∣∣∣
t=0

|Σt| = 0

if each Σt is Lagrangian.
There are two examples to keep in mind. The first example is a unit circle S1 in R2. The

mean curvature vector H of S1 is just the position vector, and JH, the vector obtained
by rotating the mean curvature vector, is just the unit tangent vector of S1. From this
observation, for any compactly supported smooth function h on S1, the pairing 〈∇h, JH〉 =
h′(s), where s ∈ [0, 2π] is the usual parameter of S1. However S1 is not Lagrangian
stationary, since any deformation in R2 is Lagrangian, and S1 is definitely not a stationary
submanifold of R2.

The second example is the Clifford torus Tn ⊂ R2n, Tn given by S1
r1 × . . . S

1
rn , each of

the circles thought of being embedded into R2. For a similar reason as before the Clifford
torus is Hamiltonian stationary and not Lagrangian stationary. It is also an open question
that whether Clifford tori minimize volume among Hamiltonian deformations.

(3) Minimal Lagrangian submanifolds. If Σ is simuteneously a minimal submanifold and La-
grangian, then we call it minimal Lagrangian. We will study minimal Lagrangian sub-
manifold in more detail. Now let us look at the following example of Lagrangian Plateau
problem.

Let Γ ⊂ R4 be a curve. By a fact in symplectic geometry, Γ = ∂Σ2 for some Lagrangian
surface Σ if and only if the following condition holds

ˆ
Γ

2∑
j=1

xjdyj = 0.

By means of minimal surface theory, there exists a least area orientable surface Σ bounding
Γ satisfying that Σ is Lagrangian stationary.

Theorem 6.26 ([McL96]). Let Σn ⊂M2n, with M a Calabi-Yau manifold. Suppose Σ0 is a regular
special Lagrangian submanifold. Then the moduli space of special Lagrangian submanifold Σ near
Σ0 is a smooth manifold of dimension b1(Σ0).

Proof. Consider all surfaces nearby Σ0 as a graph over Σ0. That is, suppose

Σ = {expx(v(x)) : v ∈ Γ(NΣ0), v is smooth}.
Now the condition Σ0 being special Lagrangian gives us ω|Σ0 = 0, Im(α)|Σ0 = 0. Define a map
F : Γ(NΣ0)→ E 2(Σ0)× E n(Σ0) by letting

F (v) = (exp(v)∗(ω), Im(exp(v)∗(α))) .
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The linearization at 0 is given by (which will be calculated later)

F ′(0)(v) =
(
d((Jv)#),−d ∗ ((Jv)#)

)
.

So F ′(0) is surjective onto the Cartesian product of Banach space of exact 2-forms with the
Banach space of exact n-forms, choosing a proper topology (W 1,2 topology, for example). Moreover,
the null space of F ′(0) is precisely the space of harmonic 1-forms. By the inverse function theorem
and Hodge theory, all nearby special Lagrangian submanifold form a smooth manifold of dimension
equal to b1(Σ0).

To conclude the proof, we only need to calculate the linearization. The calculation proceeds as
follows.

d

dt

∣∣∣∣
t=0

F (tv) = (Lvω,LvImα).

Where Lv is the Lie derivative in v direction. By Cartan’s formula,

Lvω = iv(dω) + d(ivω) = d(ivω) = d((Jv)#),

Lv(Imα) = iv(d(Imα)) + d(iv(Imα)) = Im(d(ivα)).

Suppose locally we have v =
∑n

i=1 aiJei, ai real. Then on Σ0 we have

iv(dz
1 ∧ . . . ∧ dzn) =

n∑
j=1

(−1)j+1dz1 ∧ . . . ∧ dzj(v) ∧ . . . ∧ dzn.

And dzj(v) = dzj(ajJej) = iaj .
On the other hand,

θv = (Jv)# = −
∑

(−1)j+1ajdz
1 ∧ . . . ∧ dzj−1 ∧ dzj+1 ∧ . . . ∧ dzn.

We got the desired equality. �

6.4. Minimizing volume among Lagrangians. Given the success of the area minimization
problem in minimal surface theory, it is reasonable to ask:

Question 6.27. Is there a regularity theory for area minimization if we only consider Lagrangian
competitors?

We need to be more precise about what sort of area minimization problem we are trying to solve.
There are various possibilities:

(1) Plateau problem. Given Γn−1 ⊂ R2n, find an oriented Lagrangian Σn with ∂Σ = Γ and

|Σ| = min{|Σ′| : Σ′ Lagragian and ∂Σ′ = Γ}.

(2) Minimization in homology. Suppose M2n is compact and that α ∈ Hn(M ;Z) is a
homology class that contains at least one Lagrangian submanifold. We wish to find a
Lagrangian submanifold Σ ∈ α with

|Σ| = min{|Σ′| : Σ′ is Lagrangian and belongs to homology class α}.

Remark 6.28. When n = 2 there is an alternative approach to area minimization, similar to the
mapping problem for minimal surfaces, which we will address in the next section.

As with minimal surface theory, existence and weak compactness play a key role in the theory of
area minimization among Lagrangians. To that end we need to work in a larger class of submanifolds
than just smooth submanifolds. We work with:
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Definition 6.29. A Lagragian integral current T = (Σn,Θ, ξ) is an integral current Hn-a.e. of
whose tangent spaces are Lagrangian. Recall that an integral current acts of smooth compactly
supported n-forms as ˆ

T
η =

ˆ
Σn

〈η|x, ξ|x〉Θ(x) dHn(x),

and that its total mass is defined to be

M(T ) =

ˆ
Σn

Θ(x) dHn(x).

There is a standard weak topology associated with Lagrangian integral currents, the weak-∗
topology. In particular, Ti ⇀ T if for all compactly supported smooth n-forms η,ˆ

Ti

η →
ˆ
T
η.

We note in passing that this is equivalent to the so-called flat convergence.
Lagrangian integral currents do satisfy a compactness theorem, like we wanted.

Theorem 6.30. Let {Ti} be a sequence of Lagrangian integral currents with M(Ti) ≤ C. Then there
exists a Lagrangian integral current T with M(T ) ≤ C such that, after passing to a subsequence,
Ti′ ⇀ T . Furthermore, if the Ti all belong to the same homology class α, then T does too. Likewise,
if ∂Ti = Γ for all i, then ∂T = Γ too.

Remark 6.31. Other than the additional conclusion that the limit is Lagrangian, this follows
from the Federer-Fleming theory of integral currents [FF60]. To check that the limit current is
Lagrangian (i.e., Lagrangians are closed under weak convergence) we note that it suffices to checkˆ

T
ω ∧ η = 0

for every compactly supported smooth (n − 2)-form η, where ω is the Kähler form. This is an
integral condition, and is indeed preserved by weak limits.

A large part of the regularity theory for area minimization in the minimal surface setting relies
on the monotonicity formula, which helps establish upper bounds for volumes on all scales. Un-
fortunately, the general theory of Lagrangian integral currents and Lagrangian minimizers lacks a
monotonicity formula.

Proposition 6.32. The cylinder Σ2 = S1(ε)× [0, 1] ⊂ R2×R2 ∼= R4 = {(x1, y1, x2, y2)} solves the
Lagrangian Plateau problem.

Proof. Let Σ̃ be any other Lagrangian surface with ∂Σ̃ = ∂Σ (in the sense of currents). For a.e.

t ∈ (0, 1), Σ̃ ∩ {x2 ≤ t} is a surface with boundary and therefore Σ̃ ∩ {x2 = t} consists of finitely
many closed curves. By Stokes’s theorem and the Lagrangian property,

0 =

ˆ
Σ̃∩{x2≤t}

ω =

ˆ
Σ̃∩{x2=t}

(−y1dx1)−
ˆ
S1(ε)×{0}

(−y1dx1) =

ˆ
Σ̃∩{x2=t}

(−y1dx1)− πε2.

By Green’s theorem the integral on the right measures ± the total signed area enclosed by the

projections of the curves comprising Σ̃ ∩ {x2 = t} onto the x1y1 plane. Then by the isoperimetric
inequality on R2,

H1(Σ̃ ∩ {x2 = t}) ≥ 2πε, for a.e. t ∈ (0, 1).

Now by the coarea formula,

area(Σ̃) ≥
ˆ 1

0
H1(Σ̃ ∩ {x2 = t}) dt ≥ 2πε,

which is the area of the cylinder Σ. The result follows since Σ is evidently Lagrangian. �
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Remark 6.33. We just showed that the cylinder Σ2 = S1(ε) × [0, 1] ⊂ R4 solves the Lagrangian
Plateau problem, but the monotonicity formula evidently doesn’t apply.

6.5. Lagrangian 2D mapping problem. When n = 2 we may attempt to minimize area as with
the mapping problem in minimal surface theory:

(1) (Classical) Plateau problem. Given Γ ⊂ R2n, minimize |u(D)| over all u : D → R2n

such that u(∂D) = Γ and u(D) is Lagrangian.
(2) Minimization in homotopy. Suppose M2n is compact, Σg is a compact surface, and

u0 : Σ → M2n is such that u0(Σg) is Lagrangian. Find u : Σg → M2n such that u(Σg) is
Lagrangian and

|u(Σg)| = min{|u′(Σg)| where u′ : Σg →M2n is Lagrangian and homotopic to u0}.

Like before, it is convenient to formulate a weak notion of Lagrangian maps.

Definition 6.34. A map u ∈ W 1,2(Σ2,M2n) is weakly Lagrangian if u∗ω = 0 a.e. on Σ, where ω
is the Kähler form of M2n. Equivalently, u is weakly Lagrangian ifˆ

Σ
fu∗ω = 0

for all f ∈ C∞c (Σ).

The following observation is the mapping problem equivalent of Theorem 6.30:

Proposition 6.35. For every C > 0, the set

{u ∈W 1,2(Σ2,M2n) is weakly Lagrangian and ‖u‖1,2 ≤ C}

is closed in the weak topology.

Proof. We present the proof in the case M2n = R2n, though the argument carries through to the
general case with some modifications.

Let ui ⇀ u, with ‖ui‖1,2, ‖u‖1,2 ≤ C. On R2n the Kähler form ω is exact: ω = dη. Let
f ∈ C∞c (Σ). Then

0 =

ˆ
Σ
fu∗iω =

ˆ
Σ
fu∗i dη =

ˆ
Σ
fd(u∗i η) = −

ˆ
Σ
df ∧ u∗i η.

The latter is a linear combination (with smooth and appropriately convergent coefficients) of first
derivatives of ui, and therefore we may take i→∞ and deduce

0 = −
ˆ

Σ
df ∧ u∗η =

ˆ
Σ
fd(u∗η) =

ˆ
Σ
fu∗ω.

The claim follows since f ∈ C∞c (Σ) was arbitrary. �

In the Lagrangian 2D mapping problem, unlike the previous section, it turns out that we do
have a notion of monotonicity and therefore there is a way to work out a regularity theory as in
the case of minimal surfaces. This has been carried out in [SW01] when n = 2. Putting the issue
of existence of minimizers to the side, the regularity theory here goes as follows:

(1) Derive a monotonicity formula that allows for upper volume control on arbitrarily small
scales for weakly Lagrangian, weakly conformal maps.

(2) Use this volume control to derive a global Hölder estimate for weakly Lagrangian, weakly
conformal maps.

(3) Introduce the concept of tangent cones of weakly Lagrangian, weakly conformal maps and
study the relationship between singularities and the cone’s flatness or lack thereof.

Putting this all together we get:
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Theorem 6.36 (Schoen-Wolfson, [SW01]). Let u : D → M4 be an area minimizing weakly La-
grangian, weakly conformal map. If D′ is a smaller disk, there is a finite set S ⊂ D′ such that
u|D′\S is a smooth immersion. Every point in S is either a branch point of u or a point at which
u has a nonflat tangent cone. The map u is smooth everywhere except across points with nonflat
tangent cones, where it is Lipschitz.

Remark 6.37. The requirement that u be weakly conformal can be arranged alongside the exis-
tence theory.

6.6. Lagrangian cones. Lagrangian cones come up in the process of blowing up singular points
as in the minimal surface theory.

•p
p

Jp

Figure 4. Cone link, Legendrian links

Definition 6.38. The link Σm−1 of an m-dimensional cone C in R2n is defined to be Σ = S2n−1∩C.
It is said to be Legendrian when TpΣ ⊆ (Jp)⊥ for all p ∈ Σ.

From this point on we specialize to m = 2. It is not hard to prove that:

Proposition 6.39. A cone C is Lagrangian if and only if its link Σ is Legendrian.

Proof. We have that TpC = TpΣ ⊕ 〈p〉. (⇒) If C is Lagrangian then J(TpC) ⊥ TpC, so every
v ∈ TpΣ must be ⊥ to Jp, so Σ is Legendrian.

(⇐) If Σ is Legendrian then Jp ⊥ TpΣ and therefore Jp ⊥ TpC. Likewise, since TpΣ is 1-
dimensional we evidently have J(TpΣ) ⊥ TpΣ and, finally, for all v ∈ TpΣ,

〈Jv, p〉 = ω(v, p) = −ω(p, v) = −〈Jp, v〉 = 0,

so, altogether, J(TpC) ⊥ TpC which shows that C is Lagrangian. �

Corollary 6.40. C is minimal and Lagrangian if and only if Σ is minimal and Legendrian.

A singular area minimizing Lagrangian map u : D → R2n will give rise to an area minimizing
Lagrangian tangent cone C2 ⊂ R2n. It is important to understand the structure of these cones for
regularity theory and to do so we restrict to n = 2. The following theorem of [SW01] exhausts the
list of Hamiltonian stationary 2-cones in R4:

Theorem 6.41 ([SW01]). Links of Hamiltonian stationary cones C2 ⊂ R4 look like

γ(s) =
1√
p+ q

( √
qeis
√
p/q

i
√
pe−is

√
q/p

)
,

with 0 ≤ s ≤ 2π
√
pq and p, q coprime.
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Proof. Let β be the Lagrangian angle, which satisfies H = J∇β or, equivalently, Hyω = −dβ.
Note that β is degree 0 homogeneous on C. We claim that dβ is a harmonic 1-form on Σ.

Let X = J∇h be a Hamiltonian vector field. If Σ is Hamiltonian stationary then

0 =

ˆ
Σ
〈X,H〉 =

ˆ
Σ
〈J∇h,H〉 = −

ˆ
Σ
ω(H,∇h) = −

ˆ
Σ
〈Hyω, dh〉 = −

ˆ
Σ
h δ(Hyω)

for all smooth compactly supported h, so δ(Hyω) = 0. By a computation (see [SW01]) we know
that d(Hyω) = 0 on R4; in particular we have d(Hyω) = 0 and δ(Hyω) = 0 which makes
Hyω = −dβ a harmonic 1-form on Σ, as claimed.

In turn this means that β is harmonic and therefore of the form β = 2as. Writing γ(s) =
(γ1(s), γ2(s)) we find that the condition for it to be a Legendrian curve on the sphere, the complex
2× 2 matrix (γ, γ′) must be SU(2). Since det(γ, γ′) = eiβ. The result follows by fairly straightfor-
ward algebraic manipulations. �

Remark 6.42. These curves Cp,q are not great circles except when p = q = 1, and in general they
lie on Clifford tori in S3. If either p = 1 or q = 1 then the curves are unknotted; otherwise they
are knotted.

By studying the second variation formula one obtains:

Theorem 6.43. If |p− q| > 1 then Cp,q is strictly unstable for Hamiltonian variations compactly
supported on C \ {0}. For |p− q| = 1, Cp,q is strictly stable.

By an indirect argument one can further show:

Theorem 6.44. There exists at least one p for which the Hamiltonian stationary Cp,p+1 minimizes
area among Lagrangian competitors homeomorphic to a disk.

Remark 6.45. The argument above is indirect, and so it is not known which cones Cp,p+1 are
minimizers.

6.7. Monotonicity and regularity of minimizers in 2D. First let’s recall the monotonicity
formula for stationary submanifolds of Euclidean space:

Theorem 6.46 (Monotonicity for minimal submanifolds). Let Σk ⊂ Rn be a minimal submanifold
without boundary. Then

d

dσ

(
σ−k|Σ ∩Bσ|

)
≥ 0.

Proof. This follows from the first variation formula. Let x denote the position vector field, r = |x|,
ζ some smooth cutoff function, and X = ζ(r)x. Then by stationarity

0 =

ˆ
Σ

divΣX dµ =

ˆ
Σ
kζ(r) + rζ ′(r)|∇T r|2 dµ.

The result follows by taking ζ to approximate the indicator function of [0, σ] ⊂ R. �

This monotonicity formula is very important for regularity theory in the minimal surface setting.
Ideally, we can find a similar useful and monotone quantity in the Lagrangian area minimization
setting.

Monotonicity in this new setting is more difficult. We’ve seen in a previous section that S1(ε)×
R is Hamiltonian stationary (in fact, minimizing among Lagrangians) and yet it evidently does
not satisfy monotonicity. One problem is that we don’t have very good choices of (Hamiltonian)
deformations. For example if h(x, y) = h(x1, x2, y1, y2) is a Hamiltonian function with compact
support, then its associated Hamiltonian vector field

Xh = hx
∂

∂y
− hy

∂

∂x
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preserves ω and volume. Ideally we can make use of vector fields that represent dilations or other
collapsing deformations.

Definition 6.47. Let u : Σ→ R4 be a Lagrangian map and γ : S1 → Σ be a curve into Σ. If η is
such that ω = dη on R4 (e.g., η = xdy − ydx) then we define

period(γ) =

ˆ
γ
u∗η.

The Lagrangian map u : Σ→ R4 is said to be exact if all its periods vanish. In that case u∗η is an
exact 1-form.

Proposition 6.48. The period of γ does not depend on our particular choice of η and only depends
on the homology class [γ] ∈ H1(Σ,Z).

Proof. Let ω = dη′ = dη. Then d(η− η′) = 0, so η− η′ is a closed 1-form, so η− η′ = dψ on R4, soˆ
γ
u∗η −

ˆ
γ
u∗η′ =

ˆ
γ
u∗(η − η′) =

ˆ
γ
u∗dψ = 0.

Likewise, if γ′ is another closed curve with [γ′]− [γ] = 0 ∈ H1(Σ,Z), then γ − γ′ = ∂Ω andˆ
γ
u∗η −

ˆ
γ′
u∗η =

ˆ
∂Ω
u∗η =

ˆ
Ω
u∗dη = 0,

since u is a Lagrangian map. �

The following alternative characterization of exactness of Lagrangian maps will be useful:

Proposition 6.49. Endow R5 with coordinates (x, y, ϕ) = (x1, x2, y1, y2, ϕ) and consider the pro-
jection π : (x, y, ϕ) 7→ (x, y) onto R4. Let α = dϕ − (xdy − ydx) be the contact 1-form on R5. A
Lagrangian map u : Σ → R4 is exact if and only if it admits a Legendrian lift ũ : Σ → R5, i.e.,
there exists ũ with π ◦ ũ = u and ũ∗α = 0.

Proof. If u admits a Legendrian lift ũ, then we have 0 = ũ∗α = ũ∗dϕ − ũ∗η, so u∗η = ũ∗η is an
exact 1-form on Σ, so u : Σ→ R4 is Lagrangian. Conversely, if u : Σ→ R4 is exact and Lagrangian,
then u∗η = dφ for a function φ on Σ. The map ũ = (u, φ) is then Legendrian. �

Not every Lagrangian map is exact, but instead they are locally exact in a suitable sense. This
is good enough for the purposes of regularity theory.

Definition 6.50. A diffeomorphism F on R5 is a contact transformation if F ∗α = fα for a scalar
field f . Note that if ũ is a horizontal Legendrian map then so is F ◦ ũ.

There is a large class of contact transformations on R5. In fact, a computation shows that:

Proposition 6.51. If h = h(x, y, ϕ) is smooth, then the vector field

Xh = hx
∂

∂y
− hy

∂

∂x
− hϕ

(
x
∂

∂x
+ y

∂

∂y

)
+ (−2h+ (xhx + yhy))

∂

∂ϕ

generates contact diffeomorphisms.

We now vaguely describe the proof of the monotonicity formula.

Auxiliary variables. First we will need to introduce new coordinates. Recall that in the minimal
surface case, monotonicity was obtained by plugging X = x = ∇s, s = 1

2(x2 + y2) into the first
variation formula. To that end, introduce:

(1) We use s = 1
2(x2 + y2) in this setting, too. Its associated vector field is

Xs = x
∂

∂y
− y ∂

∂x
= J(∇s).
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(2) We will also use the ϕ coordinate function, whose associated vector field is

Xϕ = −
(
x
∂

∂x
+ y

∂

∂y

)
= −∇s = J(Xs).

(3) Write s̃ =
√
s2 + ϕ2, which will play the role of the square of the distance function, and

define
t = log s̃ and θ = arctan(ϕ/s) ∈ [−π/2, π/2].

Equivalently, t, θ satisfy t+ iθ = log(s+ iϕ).
(4) We will be considering Hamiltonian maps in these new t, θ coordinates; i.e., η(t, θ). The

divergence of the vector field generated by η is computed to be

divΣXη = (2ηθt − 2ηθ)|∇T θ|2 − 2(ηθts̃
−1 cos θ + ηts̃

−1 sin θ)

+ (ηtt − ηθθ − 2ηt)∇T θ · ∇T t.

Goal. We will try to particularly convenient functions η for which the last term drops out. To do
this we will arrange that ηtt − ηθθ − 2ηt = 0 by treating it as a wave equation with time variable θ.
More specifically, we will solve

ηtt(t, θ)− ηθθ(t, θ)− 2ηt(t, θ) = 0 on (−∞,∞)× [−π/2, π/2]

η(t, 0) = 0

ηθ(t, 0) = ζ(t),

for a smooth function ζ which is such that

ζ is non-increasing, ζ ≡ 0 for t ≥ log(1/2) and ζ(t) = 1− 2λet for t ≤ −c,
for constants c, λ > 0 to be determined. If we can solve this wave equation, the divergence of Xη

collapses to
divΣXη = −2G · |∇T θ|2 + 4F

where G = ηθ − ηθt and F = −1
2e
−t(ηθt cos θ − ηt sin θ).

Remark 6.52. In regularity theory we mostly care about the monotonicity formula on very small
scales. In our logarithmic coordinates, this translates into the fact that we are only interested in
the behavior of η for very negative values of t. This explains why we’re diligently prescribing the
behavior of ζ for t ≤ −c and have it vanish for t ≥ log(1/2). In particular, this construction will
yield a Hamiltonian that is supported in B1.

Solving the wave equation. Because of the finite speed of propagation in wave equations and
the explicit description of ζ for t ≤ −c, we can explicitly compute

η(t, θ) = θ − 2λet sin θ for t ≤ −c− π/2.

In this same region we see that

G = 1− 2λet cos θ + 2λet cos θ = 1, and

F = −1

2
e−t(−2λet cos2 θ − 2λet sin2 θ) = λ,

and so divΣXη = −2|∇T θ|2 + 4 for t ≤ −c− π/2.

Rescaling the support. It was pointed out in Remark 6.52 that η is a Hamiltonian with support
in B1. The functions

ηa(t, θ) = η(t− 2 log a, θ),

Fa(t, θ) = F (t− 2 log a, θ), and

Ga(t, θ) = G(t− 2 log a, θ)
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give rise to a Hamiltonian supported in Ba instead. This contact vector field satisfies

divΣXηa = −2Ga|∇T θ|2 +
4

a2
Fa.

Monotonicity. The monotonicity formula is obtained, as in the minimal surface case, by studying
the first variation formula at two different scales a and b. This is done by plugging ηa, ηb into the
first variation formula. The following lemma is key in handling the various error terms:

Lemma 6.53. There exist c, λ > 0 such that F ≥ 0, 0 ≤ G ≤ 1. Furthermore, there exists
θ0 ∈ (0, 1) such that Ga −Gb ≥ 0 for 0 < b ≤ θ0a.

By putting this all together we finally obtain:

Theorem 6.54 (Density bounds). The limit

Θ(p) = lim
σ↓0

1

πσ2

ˆ
Σ
Fσ dA

exists and is upper semicontinuous. Furthermore,

c1 ≤
Area(u(Σ) ∩Bσ)

πσ2
≤ c2

for small enough σ > 0.

From this we get:

Theorem 6.55 (Hölder regularity). Suppose u : D1 → N4 is weakly conformal, exact, and La-
grangian stationary. Write ũ for the Legendrian lift of u. If there exist r0, c > 0 such that

Area(ũ(D1) ∩Br(p)) ≤ cr2

for all p ∈ N , r ≤ r0, then ũ is Hölder continuous in D1/2. If u|∂D1 : ∂D1 → N has finite energy
then ũ is Hölder continuous on all of D1. There exists ε0 > 0 such that if Area(u(D1)) ≤ ε0, then
there is a uniform upper bound on the global Hölder modulus of continuity of u on D1.

Partial regularity. So far we have shown that our minimizers (should they exist and be exact)
satisfy a monotonicity are globally Hölder continuous. By a tilt-excess decay type iteration scheme
(similar to the one in Allard’s theorem) one can show that being weakly close to a plane gives C1,α

bounds and, at this point, this can be improved to C∞ bounds by adapting the standard argument.
Furthermore, the exactness condition can be lifted because all Lagrangian maps are locally exact
and regularity is a local result.

Theorem 6.56 (Regularity near almost-flat points). Let u : D → R4 be weakly conformal and area
minimizing among Lagrangians in W 1,2(D,R4) ∩ C0(∂D) and u(∂D) = Γ. If z ∈ D is such that u
is approximately differentiable at z; i.e., there exists an affine map ` : R2 → R4 such thatˆ

D
|u− `|2 + |∇u−∇`|2 ≤ ε,

for ε sufficiently small, then u is C∞ near z.

Main regularity. We now come to the main regularity theorem. We study minimizing Lagrangian
maps u : D → N4 and separate points p ∈ D into two categories:

(1) Points at which every tangent cone is flat. These form an open set Ω. In this case the
tangent cones are weakly conformal maps of C into C and can be shown to be of the form
azn, a ∈ C. These are the branch points, they are isolated, and u is a smooth immersion
on the open set Ω away from the branch points, and is in fact smooth across the branch
points (with vanishing differential).
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(2) Points at which there exists a nonflat tangent cone. By studying those cones carefully
[SW01] show that u is Lipschitz across these singular points, and that these points also
form a discrete set.

Putting it altogether we obtain:

Theorem 6.57 (Schoen-Wolfson, [SW01]). Let u : D → N4 be an area minimizing weakly La-
grangian, weakly conformal map. If D′ is a smaller disk, there is a finite set S ⊂ D′ such that
u|D′\S is a smooth immersion. Every point in S is either a branch point of u or a point at which
u has a nonflat tangent cone. The map u is smooth everywhere except across points with nonflat
tangent cones, where it is Lipschitz.

Remark 6.58. This has been extended to higher codimensions in [Qiu03].
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