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2 NOTES BY DAREN CHENG, CHAO LI, CHRISTOS MANTOULIDIS

These are notes from Rick Schoen’s topics in differential geometry course taught at Stanford
University in the Spring of 2015. We would like to thank Rick Schoen for an excellent class. Please
be aware that it is likely that we have introduced numerous typos and mistakes in our compilation
process, and would appreciate it if these are brought to our attention.

This course will focus on applications of the theory of minimal submanifolds. Topics covered
include the two dimensional mapping problem and its relevance to the study of positive isotropic cur-
vature, minimal hypersurfaces and scalar curvature as well as the more general theory of marginally
outer trapped surfaces (MOTS), and calibrated submanifolds and associated problems.

1. BACKGROUND ON THE 2D MAPPING PROBLEM
The basic setup in the 2D mapping problem is:

Question 1.1. Given a map ug : ¥? — (M", h) from a closed surface to a compact Riemannian
manifold, can we homotope 1y to a map of least area? That is, does there exist u : ¥ — M such
that Area(u) = inf{Area(v) : v ~ ugp}?

Recall that if u is sufficiently differentiable then by the area formula we have
Area(u) = / |tz A gz | dat da?
b

where

Hu:cl N Ug2 H = \/”uzl H2||ua:2 ||2 - <u$17ux2>2'

One drawback of working with the area functional is its diffecomorphism invariance, i.e. Area(u) =
Area(uo F) for all F € Diff(¥?), which makes it behave poorly from an analytic point of view. For
example even if we’re minimizing area, we cannot expect to get good regularity in the limit unless
we take care to choose good parametrizations. In two dimensions one way to overcome this is to
introduce the ”energy functional.”

Definition 1.2. The energy function of a C! map u : (3, g) — (M, h) is defined to be

(1.1) Bw) = | ldulav,

From Cauchy-Schwarz we have
1 1
o A2l < 5 (| + e ) = 5

(assuming we’re working at the center point of an exponential chart) with equality happen if and
only if
Upt L Uy, Humlu = HU:EZH
In other words, for every C' map u : (,g) — (M, h) we always have the area bounded by half
of the energy, with equality only if u is wealky conformal.

Definition 1.3. We call a map u : (3, g) — (M, h) harmonic if u is a critical point of the energy
functional.

When v is simultaneously harmonic and conformal, then any variation {u;} produces two curves
depending on the variation: one is the half of its energy, the other is its area. We know wy is critical
point for energy, then the first curve has vanishing slope at ¢ = 0, which forces the second curve,
always lying below the first curve, to have vanishing slope at ¢ = 0. That means ug is also a critical
point for area functional. In conclusion, we observed the following

Fact 1.4. If ug is harmonic and conformal, it’s also a critical point for the area functional.

This observation allows us to study conformal harmonic maps instead of minimizers for area
functional. Now we regard energy E as a functional on both the map v and the metric g.



286 - TOPICS IN DIFFERENTIAL GEOMETRY - LECTURE NOTES 3

Proposition 1.5. The energy functional E(u,g) = [ Hdu||§dVg has the following properties:

(1) Conformal invariance: E(u,e?\g) = E(u, g). This is so because

Blusg) = [ 97 (et gda' d”
and a conformal change of the metric g transforms g” and /det g inversely.
(2) Diffeomophism invariance: For any diffeomorphism F : ¥ — ¥, E(uo F, F*g) = E(u, g).
1.1. Hopf differential. Assume v : (3, g) — (M, h) is harmonic, X is a vector field on ¥ and F;

is the flow generated by X. By diffeomorphism invariance, we have, for small £,

E(uo Fy, Fg) = E(u, g).
Take the differential both sides at t = 0. Since u is critical point of energy functional, the differential
in the u component is 0. Therefore

d d
0=— E F . Frg) =0+ — E(u, Fq).
dt -0 (u o ty L'¢ g) + dt 0 (u? t g)
In local coordinates this is
d .
0=— / 977 (Ugi, Uy )/ det grda.
dt|,_yJx

Now g = Lxg = V;X; + V;Xj, so above gives
0= / {—(Xij + Xji) (ugi, ups )/ det g + g7 (i, uy) (div X)y/det g Hda.
Definition 1.6. We define the (stress-energy) tensor to be
1
T’ij = <umiauxj> - §Hdu||291]
Then the computation above implies
0= 2/ <Xi7j,ﬂj>d$, vVX.
by
Therefore we conclude
V,T; =0, i=1,2.
And by definition try(7") = 0. So the (stress-energy) tensor 71" is a transverse traceless tensor.
In local coordinates normal at one point, we can write T' as a two-by-two matrix:
1 2 2
T..) — §(Hux1H - HuxQH ) <ux17uaz2> ) )
= (PP i )
This reveals the interplay between T and the so called Hopf differential on a surface. Write

g = A\?|dz|?, where z = 2! + /=122 is a local holomorphic coordinate. We define Hopf differential
to be ¢ = (u,,u.)pdz?. It’s straightforward to check

T is transverse traceless < ¢ is holomorphic

and
T=0&¢=0
Note also that T'= 0 means v is weakly conformal. So from above we conclude the following
Theorem 1.7. The map u is minimal for the area functional if and only if E(u,g) is a critical

point jointly in (u,g), where (u,g) takes values in W12(X, M) x T, where T, is the Teichmiiller
space of genus r.
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1.2. General existence theorem. Now we state the general existence theorem of a minimal map.
This is a major analytic tool we use in this course. We’ll omit most of the proof due to analytic
complexity. Instead, we’ll focus on geometric applications.

Theorem 1.8. Given ug : ¥ — (M, h), denote Ay = inf{A(v) : v homotopic to ug}. There exist
¥1,..., X and least area maps w; : X; — (M, h) such that:
(1) S°F_ | genus(%;) < genus(D).
(2) Ao =i Alu).
In general, when trying to take a converging sequence of maps whose area tends to Ag, two
types of singularities may occur: neck-pinches and bubbles. Each neck-pinch degenerates to a 1-

dimensional segment between two parts of surfaces, and bubbles happen when area accumulates at
one point. The following picture is an illustration of this phenomenon.

Bubble ‘ ]

Neck-pinch

F1cure 1. Illustration of limit (3, w) attaining minimal area. Each bubble is blown
up into a sphere, each neck-pinch degenerates to a segment.

However, under some conditions these two types of singularities will not happen. In fact, we
have

Corollary 1.9. If ug is incompressible on simple closed curves then one of ¥; is ¥ and all others
are genus 0. If further mo(M) = {1} then there exists uw homotopic to ug attaining the least area
Ay (i.e., there is no bubbling).

Here incompressibility on simple closed curves means: for any nontrivial simple closed curve «
in 71(X), ug(«) is nontrivial in my (M).

In most cases harmonic maps are not necessarily conformal, hence not necessarily critical for
area functional. However in the case that X is the 2-sphere:

Theorem 1.10. Ifu : (S2,gs) — (M, h) is harmonic, where gs is the standard metric on S?, then
u 18 also conformal, hence minimal.

Proof. By previous section the Hopf differential ¢(z)dz? is holomorphic on S%. That is, ¢(z)dz>
is an entire differential on C and extends to co. Take ¢ = 1/z, then near oo the Hopf differential
is ¢(1/¢)/¢*d¢?. Near ¢ = 0, ¢(1/¢)/¢* is holomorphic. So ¢(z)z* is an entire function near oo.
Hence |¢| is bounded by C/|z|* for every z. By maximum principle we conclude ¢ = 0. O

Next theorem will be our primary tool for our use.

Theorem 1.11 (Sacks-Uhlenbeck [SU8I|, Micallef-Moore [MMS88]). If mi(M) # {1} then there

exists nonconstant harmonic map u : S* — M and the Morse index of u < k — 2.

Remark 1.12. The Morse index is taken with respect to the second variation of the energy
functional. In this specific case, the Jacobi operator is: for V € I'(u*T'M),

2
LV = AV + Z RM (u,(e;), V)us(e;), e1,es form an orthonormal basis on .
i=1
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Remark 1.13. Sacks-Uhlenbeck’s approach can be (very briefly) sketched as following. For o > 1,
define

B (1) = /S (1+ dul]?) da.

For a > 1, this is a "good” variational problem and they are able to extract converging subsequences
of critical points of E,.

Micallef-Moore further modify E, to make its critical points non-degenerate, and they proved
the modified critical points also converge after passing to a subsequence.

Remark 1.14. We here point out that Colding and Minicozzi have a different approach for mini-
mizers on S2, and X. Zhou generalized the result to higher genus surfaces.

2. MINIMAL SUBMANIFOLDS AND BERNSTEIN THEOREM

2.1. First variation of area functional. Let ¥ ¢ M™ be a submanifold. Denote by D the
Levi-Civita connection on M and by h the vector valued second fundamental form

h(X,Y)=(DxY)!, X,Y e(TM).

The vector
k
ﬁ = Z h(ei, ei)
i=1

is the mean curvature, where ey, ..., e is an orthonormal basis of tangent vector fields.
Now if X is a vector field on M compactly supported on > and F; is a flow with initial velocity

X, consider ¥; = F;(X). The variation of area functional can be calculated as following
d

SD(X) = =

]Et|:/div2Xd,u.
t=0 Y

where divy(X) = Z§:1<DeiX7 e;) and dp is the volume measure on X.

Decompose X into its tangent and normal components X = X7+ X+, we may write (D, X, e;)
(De, X7 e;) + (De, X+, e;). And the normal component can be further calculated as (D, X, e;)
—(X+,(D,,e;)*). Therefore

divs(X) = dive(X7) — (X, H).
And the first variation of area functional is 6X(X) = — [ (X, H)dy.

Definition 2.1. Call ¥¥ ¢ M™ minimal if H = 0.

2.2. Second variation of area functional, Bernstein theorem. In many cases it’s necessary
to consider the second variation of area functional. We have

Proposition 2.2. Assume H=0 and X, LT,% for every p on X, and X is compactly supported
on X. Then the second variation of area functional is given by

k
525(X, X) = / IDEX2 = [k X)) = 37 RM (65, X, €1, ),
=1

with eq,...,eg being an orthonormal basis on X.

Remark 2.3. We split TM = T & NX. Then the ambient connection D gives rise to connections
on T and N¥. If Y € I'(TM) and X € I'(NM) then we have Di:X = (DyX)t. Then we
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may rewrite || DX |2 = Zle Dz X1 and ||(h, X)||* = Zi,j<hi,j»X>2 = |[DT X||?, and the second
variation is given as

k
FEXX) = [ DX~ 30 R (60 X, X) = | DX,
> i=1
Definition 2.4. Define the Jacobi operator £ on I'(NX) by
LX =A'X 4 RM(ei, X)ei + Y (hij, X)hij.
1,]
Then L is a second order self-adjoint operator on I'(NY), and §*S(X, X) = — [(X, LX)dp.

We call the number of negative eigenvalues of £ the Morse index of 3. ¥ is called stable if the
Morse index is 0, strictly stable if there are also no Jacobi fields.

A famous and important question is to understand the structure of stable minimal surfaces. The
first important theorem is given by S. Berstein.

Theorem 2.5 (S. Berstein [Ber27]). Let 2 C R3 be a minimal surface and given by a graph

23 = u(x!, 2?) defined for all (x',2%). Then S is a plane; i.e., u must be a linear function.

Before proving Bernstein’s theorem, we first state some important properties of minimal graphs
¥ = graph(u) in R"™!, where u :  — R is a C? function.

Fact 2.6. X is 2-sided. That is, 2 has a unit normal vector field v.
Fact 2.7. ¥ is area minimizing in Q x R.

The second fact is an easy consequence of calibration theory, which will reappear in later part
of the course. We prove this special case here.
Extend v to a unit vector field in Q x R by setting v(x,y) = v(z,u(z)). Since v is parallel in the

2™ direction, we conclude from the minimal surface equation that divgn+1 v = 0. In fact, suppose
€1,...,en is an orthonormal basis tangent to 3, e, 11 = v. Then we have
n+1
divgn+1 v = Z<Dei’/a €;).
i=1

Now v is of unit length, so (D, v, enq1) = 0. Therefore
n
divgnt1 v = Z(Deiy, ei) =—(H,v) =0.
i=1

The vector field v gives a calibration in the region € x R.

Q

Fi1GURE 2. Calibration
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Suppose X1 C 2 x R and 9091 = 0. Denote v; the outer unit normal vector field on ;. Let @/
be the signed region in R"*! with ¥ — ¥; = 9. Then by the divergence theorem,

0—/ diVRn+1l/—/I/~V—/ V-
/ % 1

13| = / vov = / v-vy < |¥1], by Cauchy-Schwarz.
P 1

So we conclude

Fact 2.8. If ¥ is an entire minimal graph, then
XN Br(0)| < CR", VR2>1

This is an easy consequence of the fact that minimal graphs are area minimizing. Take any
R > 0. Then X divides 0Bg(0) = Sg(0) into two parts 31, Xs. Since ¥ is a minimal graph over
the domain S3(0) C R", we have

|2 N Br(0)] < min{|34], 22|} < CR"™.
Now we prove Bernstein’s theorem through the following

Theorem 2.9. Assume X C R? is stable, proper, orientable minimal surface with Buclidean area
growth. That is, | N Bg(0)] < CR? for all R > 1. Then X is a plane.

Proof. Take a normal vector field v and let X = pv, ¢ € C2°(X). The stability condition gives
0<?%(X,X) = / V|2 — ||h||?¢?, ~ where h is the scalar second fundamental form.

So we know
/E |22y < /E IVoldu, Ve Lip,(5).

We use the logarithmic cut-off trick. Denote p(z) = |z|, then p is a proper function on ¥ and
IVpl12 < IDp|> = 1. Define

1 for p<R
¢r(p) = % for R<p < R?
0 for p > R2.

Claim: [y, [|[Ver|? < C(logR)™!.
In fact, we have

2 p? 2 [, do
Ve < / = (logR)™ / r </ ) dr.
/EH(BRQBM IVerl™< | Gogme = Us B [, e TV

The last equality is got by coarea formula. Here again we use coarea formula just for the constant
function 1 on X N Br(0) to get

do d
= —|X N B,(0)].
/p—r Vol dr

r=R>? R3
/ IVer|? < (logR)™2 | 722N B, +2/ 3% N B (0)|dr
Eﬁ(BszBR r=R R

< C1(log R)™? + Cy(log R) .

Here we used the area growth of 3.

So
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Now take R to oo we get

/‘ Hw%ﬂgf
SNBR(0) SNBp2

So h =0 and X is a plane. O

WW%@S/ IV l2du — o.

Br2—Br

Question 2.10. We are curious about possible generalization of Berstein’s theorem. The following
cases have been of great interest for researchers.
(1) For higher dimensional ¥" C R™*! entire minimal graphs, can we conclude that ¥ is affine
space? This question has been answered by many authors over many years. The conclusion
is true for n < 7 and false for n > 8.
(2) Can we get a Berstein type theorem when X" € M"*! where M is a curved manifold? In
some special cases this question can be answered. We’ll get back to this question later.
(3) For ¥? C R™ where n > 4, can we get a Bernstein type theorem? We'll focus on this
direction.

The third question is more complicated than it first appears. The fact is, we can construct
a family of area minimizing surfaces in higher dimensional Euclidean spaces. Let n = 2m and
J : R™ — R"™ being a complex structure, meaning J is orthogonal and J? = —I. For each fixed J
take X2 to be a J-holomorphic curve. Then ¥ is area minimizing by a similar calibration argument.
In particular, consider

Y={lzw):w=f(2)},

Here f is a J-holomorphic function. Then ¥ is an area-minimizing surface in R*.

3. BERNSTEIN’S THEOREM IN HIGHER CODIMENSIONS

As mentioned in the previous section, Bernstein’s theorem in its full generality fails in higher
codimensions due to the presence of .J-holomorphic curves, defined as follows.

Definition 3.1. Let n = 2m and let J be an orthogonal complex structure on R", i.e. an orthogonal

matrix J with J2 = —I. A J-holomorphic curve is a 2-dimensional surface ¥? C R" such that
J(T,X) =T,%, for all z € X.

Proposition 3.2. J-holomorphic curves are area-minimizing among orientable competitors.

Proof. Consider the Kéhler form w, defined by w(X,Y) = JX -Y. Since J is a constant matrix, we
observe that w is closed. Next we show that w is a calibrating form that restricts to the area form
precisely on J-invariant 2-planes. To see this, take any oriented 2-plane IT in R™ and let {e1,es}
be a positive orthonormal basis. By the Schwartz inequality,

lw(er,e2)| = |Jer - ea] < 1.

Moreover, w(e1, ez) = 1 if and only if Je; = ey, which is equivalent to the J-invariance of II.
To conclude the proof, let ¥y be an oriented surface with 9%y = 9%, then we can find a region
R with 3 — ¥y = OR. Then we have

Oz/dw:/w:/w—/w
R OR by Yo

— 15l [ w> sl 1%
o
and the proof is complete. O

Since the hypotheses of Bernstein’s theorem certainly doesn’t rule out J-holomorphic curves,
Proposition 3.2 shows that Bernstein’s theorem is generally false in higher codimensions. The best
one could hope for is perhaps the following statement.
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Conjecture 3.3. Let X2 C R” be a complete stable minimal surface, possibly with some controlled
area growth, then there exists 2k < n and a 2k-plane P C R" such that X is J-holomorphic in P
for some complex structure J.

It turns out that even this is false in general. Nonetheless, all hope is not lost as there are some
interesting special cases in which Conjecture is true. Below we list a few positive results.

(1) When n =4 and X is oriented with area growth suitably bounded, the conjecture is true.
(2) If genus(X) = 0 and

/E(—K)da < 00,

then the conjecture is true for all n.
(3) If the ambient space is replaced by T", then the conjecture is true for n = 4.

3.1. Complexifying the stability operator. We'll treat the case (1). A key ingredient in the
proof is a complexified version of the second variation formula. We first set up some notations
before writing down the formula. As before, let (X2, g) be an oriented surface in M™. Around each

point of ¥ we can find local isothermal coordinates (z!, z?), i.e.

9
oxl

2 2

0

0x?

g =X ((dz")? + (dz®)?) , where \* =

Next we write

(3.1) o _1(o 0N 0 _ 1[0 .09
‘ 09z 2\t '0x2) oz 2\ axt o2

Now recall that if ¥ is minimal and X € I'(IVX), then the second variation is given by

2
(3.2) 25X, X) = /E IDEX|? 3" RM(ej, X, e, X) — [ DTX|*da,
j=1

where {e;} is any orthonormal frame for T%. Now we complexify 7% and NX and extend the
second variation formula to complex vector fields. For X € I'(N¢X), we simply write

2
(3.3) 525(X, X) = / IDEX[2 = S RM (e, X, e, X) — | DT X |[2da
j=1

Of course now |D+X||? = (D+X, D+X) and likewise for ||[D? X||2. Below we’ll use the operators
(3.1) to rewrite (3.3). More precisely, we have the following formula.

Proposition 3.4. Let ¥? and M™ be as above and let X € I'(N¢X), then

_ 0 0 —
(3.4) PN(X,X) = 4/ |D5 X||? - RM(=—, X, —,X) — | D% X|?dz! A da?,
s oz 0z 0z 22
Remark 3.5. Notice that the integrand
o) o)
D% X|?2 — RM(=—, X, =, X) — |D% X||?| dz' A da?
123, X1 = R X, 2 X) = DG X PP ! o

is conformally invariant. Thus, even though it’s written in terms of coordinates, it makes sense
globally on X.

Proof.
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1. We start from (3.3). Introducing isothermal coordinates as above, the area element da
becomes A2dx! A dx?. Plugging this into (3.2) and using the orthonormal frame ej =

AT 2 j=1,2, we find that
o 2 2 9 9
(3.5) 522(X,X):/EZy\D:an||2_ZRM(W,X, ZHDT X|2dzt A da?
j=1 r j=1 j=1 ow’

2. Next we notice that

1
||DL XH2+HDL X|? = <DL X - zDiX D+, X+mi )
z2

4 oz1 22

o

<DL X +iD% X, DY, X —iDY X)

a2 axl a2

<||DL XJP 4 D, X|2>

+

%\Ho;

M\H

Likewise, we also have

1
D% X1+ 0% X1 = 5 (107 X7 + 107 X1?)

ox

and
0 o — B, o
M~ x =X M x =X
R (827 7827 )+R (857 7827 )
1m0 ) v, 0 o —
— X, — X, X
= (R (o X o 0+ R (5, X, 5, )
Plugging these into , we obtain
23(X, X) —2/ HDl X|12+|1DL X2 - RM((;3 X, ; X)
(3.6) e x, L %) DT X2 — D% X|Pda A da?
aZ 82 oz oz

3. Take the term [y, |[D4 X||?dz' A dz?. We want to integrate by parts to write it in terms of
2z
J5 |D5 X ||?dz! A da?, a curvature term and some other stuff. To do so, we observe
oz
D% X[ = 1D o X| ~ | D% X
=(Da X, Dy X)~ D% X|?
0z oz Oz

86,2<DaazX X) — (DoDs X, Y>—||D%; X|?
:g<DaX X) — (Do Dy X, X) — RM((9 0 XX)—||DTX||2
0z ' o= oz oz 9z’ 9z’
a(DaX Y>—2<D3X X)+ (Do X, Do X)— RM(8 0 X, X) - ||ID% X2
A= 0z oz o: 9z’ 9z’ 5z
(3.7)

=9 p,x. % - Lo, x, X 4 ps x|+ 105 x )P - RN L x %) -0k x|
0z e 0z a7 7z = 0z’ 07 22

Integrating over X, using the fact that X has compact support and plugging into , we

get
’ = 9 ’ 977 ’ 9 ’ ’ 977
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0 0

_pM( Y ¥ T 271 2
(3.8) R (8§’X’ az’X) 2HD%XH der” Adz
By the first Bianchi identity,
o 0 — 0 0 — 0 0 — 0 0 —
M9 9 M9 9 _ _pM o9 o _pM 9 9
R (8278Z7X’X)+R (8E’X’8Z’X) R (X’(?z’(%’X) k (8Z’X’8E’X)‘

Therefore from ([3.8) we get

_ 0 0
PY(X. X)=2 [ 2ID5 X||? —2RM (==, X, —

(X.X) =2 [ 2Dy XIP —2RM (X, o
B, )
_ X. =
0z "0z

X) —2||D% X |?dzt A da?
Oz

=4/ D5 X|I> — RM( ,X) — ||IDS X |2dat A da?
> 0z oz

as stated. The proof is now complete.
O

In the case where the ambient manifold is R™, (3.4)) simplifies and we have the following beautiful
stability criterion.

Corollary 3.6. Suppose X2 C R” is a stable oriented minimal surface, then
(3.9) / | D% X|2dz! A da? < / | D5 X|?dz! A da?, for all X € T'(NcX)
> Oz > oz

Proof. Each section X € I'(N¢X) can be written as X = X + X9, where X1, Xy are sections of
the real normal bundle NY. Then we have

§Y(X, X) = 6°S(X1, X1) + 6°(Xa, X2) > 0,
where the last inequality is true by stability. The corollary now follows from Proposition O

3.2. Stable minimal surfaces in R* and 7%. Let’s come back to complete oriented stable min-
imal surfaces in R*. Recall that our goal is to construct an orthogonal complex structure .J on
R* with respect to which ¥ is holomorphic. We introduce some notations before describing the
construction. We will roughly be following [Mic84].

For clarity, below we suppose ¥ is the image of an isometric stable minimal immersion F : M? —
R*, where M? is a complete oriented surface. Let E ~ M x R?* denote the pullback of TR* and its
metric structure via F. Then we can view T'M as a sub-bundle of ¥ and use the metric to define
the orthogonal complement bundle, which we denote by NM. Since M is oriented, the pullback
metric induces a complex structure J7 on M. Also, still by orientability, we can define a complex
structure J+ on N M by rotation by 90° in the clockwise or counterclockwise direction (notice that
we have a choice here). We then define J : M — Hom(F) as follows: for each p € M, given a
vector v € E,, we define,

p(v) = Jy (1) + Ty (),
where v and v denote the orthogonal projections of v onto T,M and N,M, respectively.
The triviality of E allows us to view J as a map from M to Hom(R*). What we want to
demonstrate now is that J is constant, so that J : M — Hom(R?*) extends as a complex structure

on all of R, To see this, we first complexify E, TM and NM and extend JT and J* to be complex
linear maps. Then J7T gives rise to a splitting

TeM =T"M @ T M.

Likewise, NcM splits as NMOM @ N%1 M. We denote NY°M by V; then N»'M = V. With these
notations, we form the following sub-bundle of Ec ~ M x C*:

W=T"“MaoV.
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For each p € M, the fiber W, is a subspace of C*. The constancy of J is then translated into the
constancy of W.

Proposition 3.7. If T(W) is closed under the usual directional derivatives in C*, then W, is
independent of p.

Proof. Take w € W), C C* and extend it as a constant vector field on M. Note that since

C*=W, oW,

for each ¢ € M we can decompose wy, = wé’o + wg’l, with wé’o € W, and wg’l € W,. We will show

that w®! is constantly zero. To see this, observe that since w is a constant vector field, letting 0
denote a directional derivative, we have

0= 0w = dw"°® + 9!
(3.10) = (0w)"? + (ow)*?

where the lait equality follows from the assumption that I'(W) is closed under differentiation.
Since W), @ W, is a direct sum, (3.10) immediately implies that both wh? and w%! are constant.

In particular, since wg’l =0, we see that w"! is constantly zero. O
To check that T'(W) is closed under differentiation, we will use the following proposition.

Proposition 3.8. Let FZJ; denote the projection of F,, onto NcM and let FZIZ’O, Fggl be the pro-

jection of F5 onto V', V, respectively. If F%Y =0 then (W) is closed under differentiation.

Proof. Recall that F' is minimal. Introducing isothermal coordinates, F' is also conformal. Thus F
is harmonic and we have

(3.11) F, - F, = 0 (Conformality)

(3.12) F.z = 0 (Harmonicity)
Next take a local positive orthonormal frame {e3, e} of NM such that
Tt (e3) = ex; J*H(ea) = —e3,
and let £ = %(63 —ieyq). Then V = spang(e) and W = spang(e, F).
Now let s € I'(W) and write
s=a(z)F; 4+ b(2)e.
To save notations, below we simply write X ~ Y if X =Y mod W. Now we compute

3} 0
(3.13) 555 = aF,, + bge,

and expand the two terms on the right using the basis {F., Fz,£,2}. The first term becomes
_Fzz'FE Fzz'Fz

Fzz— |Fz’2 Fz+ ‘FzP FE+(Fzz'g)5+(Fzz'5)g
F., F _ F,,-F _
~ TEZP P+ (F,, )= ’Z;ZP “F+ (FY% - e)E,

where we used the fact that F ZIZ’O <& = 0 in the last equality. Now by (3.11]), the first term above
vanishes. Using the assumption ng’l = 0, we see that the second term vanishes as well. Thus
F,, ~0; that is, F,, € V.
Next we look at the second term in (3.13]). Then we have
0 %E - F,

0z |F.]? 825‘5)5
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8@6 - F,
= ZyFi\QFE (¢ had unit length)
z
€ Fzz . .
=— TAE F: (integrate by parts in the first term)
z
E . Fo’l
= S P (e =0)
z

= 0 (by assumption) .

Thus for each section s of W, we’ve shown that %8 ~ (. Similarly we can show that %s ~ Q.
Thus I'(W) is preserved by differentiation. O

To verify the assumption of Proposition 3.8, we suppose in addition that M is parabolic.

Definition 3.9. Given a Riemannnian surface M, we say that M is parabolic if every positive
superharmonic function on M is constant.

Below we give some examples of parabolic manifolds.

Example 3.10.

(1) The complex plane C is parabolic. On the other hand, the unit disk D C C is not parabolic.
(2) Any compact Riemann surface with finitely many punctures is parabolic.
(3) If M is a complete surface with |M N Bg| < CR? for R large, then M is parabolic.

Proof. Suppose v > 0 is a positive superharmonic function on M. Letting w = logu, we

have
2
Aw = Au_ ‘VZ| < Au |Vw|?
u u u
(3.14) < —|Vw|? (since Au < 0) .

Next we test the inequality (3.14) against 2, where ¢ is any test function ¢ € CL(M),
getting

/ ©?|Vw|2dvol < —/ ©?Vwdvol = 2/ »(Vp, Vw)dvol
M M M

1
S / soQ\VwIdeolw/ V| *d vol
2 Ju M
Hence we get
/ SOQ,VUJ’deOl < 4/ ]Vg0|2dvol.
M M

Applying the logarithmic cut-off trick as in the proof of the Bernstein theorem in the last
section, we conclude that w, and thus u, is constant. ]

(4) If X2 C R™ is an entire minimal graph, then ¥ with the induced metric is parabolic.

Proof. We will prove that ¥ is conformally equivalent to C. By the uniformization theorem,
we know that X is conformally equivalent either to C or to D). Assume by contradiction
that the latter holds and let F' : D — X be a biholomorphic map. Since 3 is isometrically
and minimally embedded, F' is harmonic as a map of D into R"™. Modifying F' by an
automorphism of D is necessary, we may assume that F'(0) = (0,0, (0,0)).

Next denote F(x1,x2) = (Fi(x1,x2), Fa(x1,22)). By the previous paragraph, F is a
harmonic diffeomorphism from D to (R2, k), where h is obtained by pulling back the induced
metric on ¥ via (x1,x2) — (21, 22, u(x1, x2)).
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Recall that in complex coordinates, the Jacobian of F can be written as
(3.15) J(F) = | = |F,

which is everywhere strictly positive since F is a diffeomorphism. This implies that |F,| is
everywhere non-zero, so we can define a metric g on D by

g =F:["|dz|?.
Now since F is harmonic, we have F5, = 0 and hence A|F,|> = 0, which means that (DD, §)

is flat (Gauss curvature zero).
Using (3.15)) again, we see that |dF| is dominated by |F| and hence

F*(h) < cg,
where c¢ is a dimensional constant. Now for an arbitrary R > 0, we can choose r such that
distp*(h)(O,aDT) = disty(0,0(F(Dy))) > R.
Combining this with the previous inequality, we get
(3.16) cdistg(0,0D,) > R

Next we take the coordinate function z on ID. Then
{ Az = 0
2] < 1
so by the harmonic function estimates in [CY75] and the definition of g, we have
1
|F:]2

This in turn gives us

C

2 C
= |Voz2(0) < —— < —_,
Var[(0) < dist;(0,0D,)2 = R2

|dF(0) = |E.[*(0) > eR%.
Since R is arbitrary, we obtain a contradiction, so ¥ is conformally equivalent to C and
hence parabolic. O

After this little digression into parabolic manifolds we return to our problem and give the precise
statement of the main result of this section.

Theorem 3.11. Assume F : M? — R* is an oriented, stable, parabolic, complete minimal surface.
Then F is J-holomorphic for some orthogonal complex structure J on R*.

Proof. By Proposition the proof reduces to showing that F; 91 vanishes. We will demonstrate
this by plugging special test functions into the stability inequality and using parabolicity. To
that end we consider a test function of the form fs, where f is a real-valued smooth function with
compact support on M, and s € I'(NcM). Then we have

(3.17) *S(fs, f35) = / |121%Is|* — f*(Re(s, D.zs)) — f2((0] s)|*dz" A da?,
M
where we’re using D to denote D+. To derive this formula, we recall that by (3.4) we have

(3.18) S (s, f5) = [ D=1 = |0F (F)Pda’ A do?
M

To handle the first term we compute
[ D=5 = [ De(s5) - Do(55) = [ (fzs+ 1Dss) - (125 + 7D.5)

= / |£21|8)? + £?|Dzs|* + f f.Dzs - 5+ (complex conjugate of the previous term)
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(3.19) = [1LPIsP + £1Dssf? + 2Relf£.Dzs-5)
Now notice that

/ffZDzS'S: ;/(fQ)zDzS'S

= —;/szzDzs 5 — % /f2|Dzs|2
Plugging this back into , we get
(3.20) [ 10:79 = [ 1215 = PRe(Dozs -5
For the second term in , we notice that

8Z(f5) = f.s+ fO.s.
Since s is a normal section, projection onto T'M Kkills the first term and we’re left with
(3.21) 92 (fs) = f(07's)
(3.17) now follows by plugging (3.20) and (3.21)) back into (3.18). To proceed, we take a vector

a € C* and denote by a'%(p) its projection onto V. Applying (3.17) with ¥ in place of s and
using the stability of M in R?, the result we get is the following

(3.22) /M Fala)dA < /M 1V FP2atOPdA < [al /M IV 2dA,

where ¢ is the following expression:

—2 10 —
(3.23) dla) = [prpiRe {(FL ) (FY )}
Take an orthonormal basks {a1,...,as} of C*, denote g(a;) by ¢; and sum over j, we obtain
- 2
- 1,0
(3.24) ZQJ':’FHRG{FZI&O'FQ}:O
j=1 -

Now by [FCS80], the inequality (3.22) with ¢; in place of g(a) implies the existence of a positive
function u; on M solving

(3.25) Auj +qju; =0
Letting w; = log u;, an easy calculation shows that

Awj = —q; — [Vwy|*.
Thus we get

[ @ vuPif = [ cawyr=2 [ 95T,
M M M
<3 [ P2 [ v

1
[ i+ v <2 [ 9P
M 2 M
Summing over j and using (3.24), we deduce that

4
1/ 2 r2 / 2
- Vw;|7f* <8 V£l
2 Jy 21V [ 1vs

and therefore
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Again by [FCS80|, we get a positive function v such that

8Av 4 — Z \Vw;|*)v

= Av < 0,
that is v is a positive superharmonic function. By the parabolicity of M, v must be a (nonzero)

4
constant. Looking back at the PDE satisfied by v, we immediately deduce that > |[Vw;|? = 0, so
j=1
each wj, and hence each u;, is constant. By (3.25), we see that each g; is zero. Since the a;’s form
a basis for C*, we conclude that

-2

(3.26) (@) = TpaRe ﬂFlO a)(FLO. j}_w)ﬁnauaec4

zz

1
Now at a point p where F=(p) # 0, we can let a = ;Z‘ and plug it into (3.26). Then we get

(3.27) [ )IF (p)] = 0.

Thus at each p € M, one of lez’o(p) and F2! (p) must vanish. The fact that F' is conformal and
harmonic implies that F. Zl,godz2 and F, ,S,gl dz? are holomorphic quadratic differentials with values in V
and V, respectively. Hence we conclude, by unique continuation, that either lez’o or Fz();l vanishes
identically. In the latter case, the proof is complete by invoking Proposition In the former
case we simply change the complex structure J+ on NM. (Recall that we had a choice when
constructing J+. See the remarks before Proposition ) O

More or less the same argument establishes the same theorem in the compact setting of ambient
flat 4-tori instead of R?.

Theorem 3.12. Assume F : M? — T* is an oriented, stable, compact minimal surface and that
T* is a flat torus. Then F is J-holomorphic for some orthogonal complex structure J on T.

Proof sketch. By arguing as in we get A\g(A +¢;) > 0 on M for all j € {1,2,3,4}. Let

uj = e"7 > 0 be the lowest eigenfunction so that, as before,

1
/<Qj+2|ij\2>f2§2/ VI forj € {1,2,3,4}.
M M

Summing over j and recalling the definition of the ¢; we conclude
1 2 ¢2 2
Q/M;ww pes [

Picking f = 1 (since M compact) we see that each w; is constant, so each u; is constant, so
¢; = Ao(A + gj) is constant. Since the g; sum to zero they must then all be zero and the result
follows like before. O

In the proof of Theorem we made use of identity (3.23)) in (3.22]). Let’s justify that now:

Claim 3.13. We can rewrite
2 [la"0- F..[?
| |2 | F5 |2

+Re (a0 D.Dza! )] - —|F2|4Re (P a)(FY - a))

where a € C*, |a| = 1.
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Proof of claim. Recall that € = %(63 — ieq) is such that {e,2} forms an orthonormal frame for

NcM =V @ V. Note that e -6 =2-2 = 0 and ¢ - £ = 1. By differentiating a'* = (a - Z)e once and
using the product rule,

Dza'’ = 0:(a-8)e + (a-8)De
= (a-(0%)")e + (a- DsE)e + (a - €)[(Ds - £)g + (Dze - 2)e]
= (a-(0:2)")e + + [a- ((DsE-2)e + (DsE - €)E) |e + (a - E)[(Dze - €) + (Dze - €)e]
= (a-(0:8)"e+ (a -2)(DsE - €)e + (a-8)(Dse - E)e,
because Dz2-€ = Dzc-e=0,a82-€=¢c-¢=0

I
—
IS
—~
I\
3
~
>
~—
o

because e -2 =1

= - (92 (F/|FL[2) B + (052 - (F=/|EL[2) ) Je
F. N -
(3.28) =— (a . |Fz|2> (€-Fg)e.

where the last equality follows from the product rule and minimality, F.z = 0. We will differentiate
again in z, but before doing so, first we observe that

F
az <|F1Z’2> . FZ = O by Conformahty, Fz ° Fz — 07 a’nd
z

F
az <|FZ|2) =0 by minimahtYa Fz=0.
z

Consequently, 9, (F,/|F.|?) is purely normal and thus

. =z
[F2) E)?

Plugging this into (3.28)) and exploiting similar cancelations among the derivatives of ¢, £, we get

1 1
D.D-a"® = — (a. L= E-Fz)e=—|a- Fe: ) po
o |F%|? - [F[?)

0 1,0 F 0. L0 FL\ - 1,0
a?-D,Dza™" = — a'|F’2 (a0 Fz) = — a-|F’2 (@ Fz')
z z

by replacing a0 with @ in the dot product with F%O. By replacing Ft = Fi? + F%' and then

and

using F% = ;70 we get
1,0 0,1
1.0 1,0 _ a-F.2 10 a-F.20 10
al0. D,Dza™" = — ]FZIQ (a . Fﬁ ) _ ]lez (a . Fﬁ )
o a- lez,o = Lo la - on,él\g
- |F.[2 (@-F) — ‘F7Z|2

= TEp @) T TR
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From this we conclude

Re [ a10 . D.D-aq'° ‘QLO'FZZP _ 1 R FLOY(z. L0
ela™” - D, Dza>" + ‘F|2 *_’F‘Q € (a' zz)(a. ﬁ)
z z

which gives the required result. O

3.3. Stable minimal genus-0 surfaces in R", n > 5. We now try to see what we can prove
when R* (or T%) is replaced by R™, n > 5. We will show that:

Theorem 3.14. Let F : M? — R", n > 5, with M complete, oriented, stable, genus 0, and finite
total curvature. Then there exists an affine subspace A** C R™ such that F is J-holomorphic for
some J.

Remark 3.15. The requirement of finite total curvature might appear to be too strong but in fact
it isn’t. One can check using Gauss-Bonnet that, provided F is proper,

quadratic area growth, |x(M)| < co < finite total curvature.
We will appeal to a theorem by Chern and Osserman [CO67]:

Theorem 3.16 ([CO67]). Suppose M? C R™ is a complete orientable minimal surface with finite
total curvature, i.e.,

/M(—K) dA < oo.

Then M is conformally equivalent to a punctured compact surface M and the Gauss map extends
through the punctures, meaning p — T,M, N,M extend smoothly to M.

We will also need the following consequence of the stability inequality

s T2 2
(3.29) z/M [ﬂ'(?;z)‘g' ’}J;‘QRe(s D,Ds s)] dA</ /\Vf| |s|* dA,

for all f € C°(M).

Lemma 3.17. Suppose M 1is complete, oriented, stable, parabolic, and that s is a bounded section
of NcM with Dzs = 0. Then (0,5)T = 0.

Proof. From ({3.29) with Dzs = 0 and ]3] bounded we conclude that

2| 2
dA < Vfl*dA
[ P8I s [ o
for all f, so by elliptic theory there exists u > 0 with

|(0:5)" |2
A ————u=0.
u + ETAD U
By parabolicity u needs to be constant, and therefore (9,s)” = 0. g

Proof of Theorem [3.14 By invoking the Chern-Osserman theorem we can construct a complex
(n — 2)-plane bundle £ — M extending Nc M, where M =~ 52 in view of our genus 0 assumption,
and we can also extend the connection D from before to a connection on E.

By [KM58] and the fact that dim M = 2 it follows that F is a holomorphic vector bundle; i.e.,
for all p € S? there exists a local basis s1,...,sp,—2 of E which is holomorphic (Dzs; = 0). By
[Gro57], the holomorphic vector bundle E necessarily decomposes as a direct sum

E=(I1 @ ®L)® Ly ® @ L) ® (L1 @@ L)

of complex line bundles order so that:
(1) Ly,..., Ly have ¢;(L) > 0,



286 - TOPICS IN DIFFERENTIAL GEOMETRY - LECTURE NOTES 19

(2) Lpt1,.-., Ly have ¢;(L) = 0, and
(3) Lr—f—l, oo, Lyp_9 have ¢; (L) < 0.

Roughly speaking, we will show that if there are no flat bundles then F' is going to be J-
holomorphic; conversely, flat bundles will correspond to direction of vanishing of the second funda-
mental form and will help determine the affine space A%* from the statement of the theorem.

Seeing as to how E was initially constructed as a complexification of a real bundle, the real pairing
E; x E;, — R, (s1,82) — $1 - S2, gives rise to a holomorphic isomorphism F = E*. According to
this isomorphism the signs of the first Chern classes flip and therefore our original decomposition
has to have as many positive line bundles as it does negative ones; namely, p=n —2 —r.

By definition of ¢i(-), the bundles Li,... L, (whose first Chern class is non-negative) all ad-

mit nontrivial global holomorphic sections si,...,s,—2. Since S? is compact, these sections are
additionally bounded. By Lemma above, (0,s;)T =0 for all j € {1,...,r}.
There are two cases to consider. First, suppose that all L; have ¢; = 0. Then s1,...,8,_9 is a

global basis of holomorphic sections which we have showed satisfy (9,s;)7 = 0 and therefore the
second fundamental form of M vanishes:

(s- FL)Fs 0.5 - F¢ T

Therefore M is totally geodesic and we’re done.
Now suppose that p > 0, n —2 —r = p > 0. For convenience we set up the following table of
index notation:
1§M7V§pa T+1§aub§n_2v
In other words, indices u, v run over positive line bundles, ¢, j run over non-negative line bundles,
and so on. We list some properties of s1,...,s,_9 that we will need.
(1) s, -s; =0, since
O0z(su - 85) = Dzsy - 55+ 5, - Dzsj =0
because we know that our sections are holomorphic. Therefore s, - s; is a holomorphic
function on 52, thus constant. However, the section s, belongs to a positive line bundle
and necessarily vanishes somewhere. The claim follows. As a consequence, we get:
(3.30) span{Ly, ..., L} = span{Ly,... Lyt
(2) 0.s;5 - s =0, since
85(828]' . Sk) = 858zsj - Sk + aZSj - 058,
= 0,(0zsj - ;) — Ozsj - 05 + 0,8; - Ozsk.

Since s; is holomorphic, dzs; is purely tangential so the first term drops out by orthogonality.
Next, s is a bounded holomorphic section so by Lemma (which relies on stability),
0, is purely normal, the second term drops out by orthogonality. The same goes for the
third term. Therefore the expression above vanishes, so 0.s; - spdz is a holomorphic 1-form.
The claim follows since Riemann-Roch forces such a differential to vanish identically. From
this it follows that d,s; € span{L1,..., L,}, and since (9,s; - sx)T = 0 by stability (Lemma

3.17), we get
(3.31) 0.8j,D.s; € span{Ly,..., Ly}

Now we check the following

Claim 3.18. The bundle ¢ = L1 & -+ @& L, & (TcM)'0 is parallel.
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Proof of claim. By Proposition we need to check that 0., dz map I'(§) into itself. By linearity
this amounts to showing
a25]'7 &23]', 0.F.,0:F, € F(f)

By minimality 0zF, € I'(§) is clear, while 0.s; € T'(§) is just (3.31). For the other two cases we
compute

Ozsj = (@sj)T because Dzs; = 0 by holomorphicity

Fz FE

F
= (055 ) -

the last equality following from minimality, .z = 0, and therefore 0zs; € I'(€). Likewise we find

F Fe
O.F, =(0.F,- —2 |+ (0.F,  —2% | F, + (8. F,)*"
( \FZP) *( rw) T (0:F)

_ Fx 1
= <32FZ . ‘Fz|2> F,+ (0.F.),

seeing as to how the first term drops out in view of conformality, F), - F, = 0. Now we observe
0.F, - s, = —F, - 0,s;, = 0 by stability, and we conclude 0,F, € I'(§). This completes the proof of
the claim. ([l

Next we check the following
Claim 3.19. We have dim(¢é N &) =r — p.

Proof of claim. Recall that £ = L1 @ ---® L, ® (TcM)*°. For brevity write V= L1 ® -+ & L;, so
that £ =V @ (TeM)'0. From (3.30) we see that V- C V, so span{¢, £} = C™. Observe that

n = dim C" = dimspan{¢, £} = 2r + 2 — dim(¢ N §)

which gives dim(¢N€) = 2r+2—n. From the decomposition of E into line bundles by Grothendieck’s
theorem we further have p4+r =n—2 < r = n—2—p. Combining these two relations we conclude

dim(éNé) =2n—2—p)+2—-n=n—-2-2p=7r—p
which is the required result. ]

The proof of the theorem is now completed via the following sequence of steps:

(1) Since ¢ is parallel, let’s write £ = M x A for a complex (r + 1)-dimensional vector space
A. Notice that the complex (r — p)-dimensional vector space T = A N A is (by definition)
preserved by complex conjugation and therefore the complexification W ®r C of a real
(r — p)-dimensional vector space W.

(2) Seeing as to how (TcM)™? is manifestly not preserved by conjugation we get that M x W
is a parallel subbundle of the real normal bundle NM, or in other words, that ¥ = F(M)
is a subset of an affine subspace P C R" perpendicular to W, the dimension of which is
evidently dimR" —dim W =n— (r —p) = n—r+p = 2p+ 2. That is, we have constructed
an affine subspace P?P*2 C R™ that contains the surface X.

(3) From the decomposition NcM = (M x T) @ (M x T)*, the L being taken within NgM
of course, we characterize (M x T)* as the complexified normal bundle of ¥ viewed as a
surface within P?P+2,
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(4) From (3.30) we find that (M x T)* C L1 ®---® L, ® L1 ® - -- ® L, and, by dimension
counting, this inclusion is actually an exact equality. Namely,

MxT)Yr =L@ Lol & &L,

(5) By restricting to the context ¥? C P?P*2 and the parallel nature of ¢ we find that there exists
a constant almost complex structure on P?P*T? with respect to which ¥? is J-holomorphic
as in the proof of Theorem [3.11}

0

4. POSITIVE ISOTROPIC CURVATURE

We'll see that a number of the techniques developed in the previous section will extend to non-
flat ambient spaces and thereby give important geometric consequences. Instead of studying the
second variation operator for area, however, we will study the second variation operator for energy:

B(F) = | dFf;da,

where F : ¥2 — (M", g). For the purposes of computing the energy integral, the Riemann surface
»? is thought of as being a Riemannian manifold (32, k), though the Dirichlet energy is conformally
invariant as we have seen before.

By a computation similar to that for second variation of area, we find:

Proposition 4.1. If X € T'(F*(TM)) and F is a critical point for the energy functional, then

2
1
552E(X,X) = / VX =Y R(ei, X, e, X) dAy,.
2 i=1
Remark 4.2. This is reminiscent of the formula for the second variation of energy on geodesics
vyC M,

%52E(X,X) = / IV, X|? = R(,X,v,X)ds.
Y

We will complexify the (ambient) tangent bundle and the stability operator like we did before.
For X e T'(F*(TcM)) of the form X = X; + i X5, we define

2

1 — — _
552E(X,X) = / (VX,VX) —§ R(ei, X, e;, X) dAy,
= i=1

and by arguing as in Proposition [3.4 we get:

Proposition 4.3. If X € T'(F*(TcM)) and F is a critical point for the energy functional, then in
complex coordinates z = x + iy we have

1 — _
SPECT) = [ [V2XP - R(0.. X, 02 %) du dy.
>

Remark 4.4. In general variations of energy and area behave differently. Critical points of the
prior are harmonic maps, and critical points of the latter are minimal surfaces. (Recall that we’ve
seen that these coincide on a round S2.) The second variation of energy and the second variation
of area behave differently, too. The stability operator for energy is easier to work with since it has
one less term in it but is also coarser—for example, every harmonic map into flat space is clearly
stable.
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It is important to be able to understand the effect of curvature on stabiliity. In the context of
the area functional, we know that positive curvature gives rise to instability. Likewise, we can force
instability in Proposition 4.3| provided we can construct global holomorphic sections X and that
the complex sectional curvatures R(d,, X, 0, X) are positive. This section aims to pursue these
ideas further.

Let’s set up our notation. Recall that M™ is a real Riemannian manifold with real metric (-, -).
We complexify TcM = TM ®g C and extend (-,-) to TcM, mimicking the extension of the dot
product X - Y on R" to a dot product on C". Namely, for X = Xy +iXy € Tc M we set

(X, X) = (X1, X1) — (X2, X2) + 2i(X7, X3).
Notice that this is not a Hermitian metric, just symmetric and bilinear over C.
Definition 4.5. A vector X € TcM is called isotropic if (X, X) = 0; i.e., if |X;| = |X2| and
(X1,X5) =0. A plane I12 C Te M is isotropic if every X € II is isotropic.

Example 4.6. If F is conformal, then F, = dF(0,) is isotropic. We made extended use of this
fact in the previous section.

Lemma 4.7. If11? C TcM is isotropic then there exist real vectors ey, ea, e3,eq € TM, orthonormal
with respect to the real metric, such that

? = span{e; + ieg, €3 +ieq}.
Proof. The pairing (X,Y) = (X,Y) is Hermitian, and by Gram-Schmidt over C we may arrange for
a basis X, Y of I12 to be such that (X, X) = (YV,Y) =1 and (X,Y) = 0. Write X = %(61 + ieg),

Y = %(63 +ieq). We make the following observations:

(1) The isotropy of X and Y and the fact that (X, X) = (Y,Y) = 1 together give
(e1,€1) = (e2,€2) = (e3,€3) = (e4, €4) = 1,

and (e, e2) = (e3,eq) = 0.
(2) The isotropy of X +Y = %(61 +es+i(ex + eq)) gives

(e1 +e3,e1+e3) = (e2 + eq,ea + €q) & (e1,e3) = (e2, e4),
and 0 = (e; + e3,e2 + e4) = (e1, e4) + (€2, €3).
(3) The complex orthogonality (X,Y) = 0 gives
0 = (e1 +ieg, e3 —ieq) = (e1,e3) + (€2, eq) +i[(e2, e3) — (€1, €4)].
These facts put together show that eq, e, ez, e4 are real orthonormal vectors. O
Definition 4.8. A (real) Riemannian manifold (M",g) is called PIC (short of positive isotropic

curvature, or originally positive curvature on totally isotropic 2-planes) if every isotropic 2-plane
1?2 C TcM and every complex orthonormal basis X, Y for II satisfy R(X,Y, X,Y) > 0.

Remark 4.9. Just for the sake of comparison, we recall that a Riemannian manifold is said to
have positive (sectional) curvature if R(X,Y, X,Y) > 0 for every real orthonormal basis X, Y of
every real 2-plane II1? € T'M.

We make the following observations regarding the definition of PIC:

(1) PIC manifolds are not necessarily Ricci positive. In particular, round products S* x §7~1
are always PIC but not Ricci positive.

(2) We can perturb the spherical metrics above in such a way that S x S"~! is still PIC and
yet has negative Ricci curvature somewhere.

(3) PIC manifolds are always scalar positive.
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(4) All 2- and 3-manifolds are vacuously PIC, because they have no isotropic complex 2-planes,
since isotropic subspaces can be checked to take up no more than half the total dimension
of their ambient vector space.

There are a number of interesting PIC manifolds:

Theorem 4.10 ([MMSS]). The following manifolds are PIC:
(1) (M™, g) with positive curvature operator Z : N*TM — N*TM; i.e., (Z(£),€) > 0 for all
e AZTpM\{O}H In fact, it’s enough for Z to be (2,2)-positive, i.e. the positivity condition
be met for 2-vectors & with tensor-rank at most 2.
(2) (M™,g) with positive pointwise strictly i—pinched curvature; i.e., there exists a continuous
Kk M — (0,00) such that 2x(p) < Ku < k(p) for all 11 C T, M.

The following theorem by Micallef and Wang shows that the class of PIC manifolds is rich enough
to support connected sums.

Theorem 4.11 ([MWO3)]). If (M7, g1), (ML, g2) have isotropic curvatures bounded from below by
a positive constant (e.g., if they are compact and PIC), then M{'# M3 supports a PIC metric.

We proceed by proving the fact that a manifold is PIC if the curvature operator is positive
definite or it’s 1/4-pinched.

Proof. By previous lemma any isotropic plane II is spanned by vectors X,Y with
1 . 1 .
X = 5614—162, Y = 5(634-164).
Then the complexified curvature is given by

R(X, Y, X, Y) = %(X A Y,X N }7) = %%((61 + ’iez) A (63 + i€4), (61 — ieg) A (63 — i64)).

K((II) = i [Z(e1 Nes —ea Neg,e1 Nes —ea Ney)+ H(er Neg+ex Nes,er Aeg~+ex Aes)] > 0,
if the curvature operator & is positive definite. We also see that it suffices to require the curvature
operator is positive operator on the sum of 2 wedges, which is called (2,2) positive by Michallef-
Moore.

We next prove pointwise strict 1/4-pinching condition implies PIC.

We fix a point on the manifold and let ey, ..., es be 4 orthonormal vectors in the tangent space.
Further expanding the above equation, we have

1
KI) = 1 (K13 + K24 — 2R(e2, e4, €1, €3) + Koz + K14+ 2R(e1, e4, 2, €3)]

1
T4

Here we’ve used the first Bianchi identity.
We conclude the proof by the following property of 1/4-pinched manifold.

Proposition 4.12. If p € M and k(p) > 0 such that Tk(p) < K(II) < k(p) for all two-plane
II C TpM, then |R1234‘ < %k‘(p)

(K13 + Kos + K14 + Koz — 2R1934).

The proof is straightforward consequence of the following two identities. Let u,v,w,x be 4
orthonormal vectors in 7, M.

(1) 4R(u,v,w,v) = R(u+ w,v,u + w,v) — R(u — w,v,u —w,v)

1Recall that if & = uAw is a simple 2-vector, with u, v orthonormal, then (Z(u A v),u A v) = R(u,v,u,v) =
Kspan{u,'u}~
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(1) 6R(u,v,w,x) = R(u,v+ z,w,v+z) — R(u,v — x,u,v — x)
— R(v,u+ z,w,u+z) + R(v,u — z,w,u — x).

From (i) we know 4|R(u, v, w,v)| is bounded above by 2k(p) —2- 1k(p) = 3k(p), so |R(u, v, w,v)| <

3k(p). From (i) we conclude 6| R(u, v, w, z)| is bounded by 4-2-3k(p), so |R(u, v, w,z)| < 3k(p). O

4.1. High homotopy groups of PIC manifolds. We are now ready to state a beautiful theorem
of Micallef-Moore on high homotopy groups of PIC manifolds. The proof of this result relies on
the complexified second variation of energy functional.

Theorem 4.13 ([MMB88]). If M" is compact and PIC then wo(M) = ... = m2)(M) = {0}.
Corollary 4.14. If M™ is a compact, simply-connected PIC manifold then M is homeomorphic to
S

Proof. From the theorem we see that (M) = ... = mz)(M) = {0}. By the Hurewicz theorem
we know the corresponding homology groups with real coefficients Hy(M) = ... = Hjn (M) = {0}.
By Poincaré duality we conclude that every H;(M) with 0 < j < n is trivial. So M™ is homotopic
to a sphere. By the validity of Poincaré’s conjecture, M™ is homeomorphic to S™. g

Proof. The proof of this theorem contains two parts.

(1) Existence theorem. If mi(M) # {0} then there exists a nonconstant harmonic map F :
S% — M™ with Morse index is at most k — 2.

(2) Index estimate. If M™ is PIC and F : S — M is a nonconstant harmonic map, then the
Morse index of F is at least [§] — 1.

Combing these two facts, if M™ is PIC, k > 2 and m,(M) # {0}, then we find a nonconstant
harmonic map F : S? — M with index(F) < k — 2. On the other hand, since M is PIC we know
index(F) > [5] — 1. This gives k — 2 > [§] — 1, which means k > [§] + 1.

We quote the existence part from chapter 1 of our notes. Now we focus on index estimate.

Suppose F : S? — M is a nonconstant harmonic map. Then the complexified second variation
of energy functional is given by

1 _ _ _
g52E(X, X)=1(X,X)= / [|V:X|* — R(F., X, F;, X)| dzdy.
S2
Where X € I'(F*(NcM)).
Now the index form is real, and the complexified index form is the Hermitian extension of its
real form, so we have

index > min{dim¢ V : V C T'(F*(NcM)),I <0 on V}.

Note that whenever we have a holomorphic isotropic section X of the pullback bundle, naturally
we have I(X, X) < 0. The proof is done by constructing a large family of holomorphic isotropic
sections.

Claim 4.15. There ezists a subspace W C I'(F*(NcM)), such thatVX e W, V:X =0,(X,X) =0
and dim(W) > [5].

Clearly F is in W by harmonicity of . So the complement of F, in W gives a [§]—1 dimensional
subspace of holomorphic isotropic sections as the theorem infers.

Denote E = F*(NcM). As before, E is a Hermitian bundle over $2, so the extended connection
is automatically holomorphic. Again by [Gro57], E splits into line bundles, listed in decreasing
order of first Chern class:

E=L1® - ®Ly)®(Lps1 @ ®L)D(Lpy1 @ ® Ly_).
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Where Ly, ..., L, have positive first Chern class, Lpi1,..., L, have zero first Chern class, and
Lyi1,...,Ly—5 have negative first Chern class. Choose a section s; € I'(L;) for j = 1,...,p.
This is always possible since the first Chern class is positive. Also we know that s; must vanish
somewhere. The complex linear pairing (s;, si) for 1 < j,k < p is then a holomorphic function on
S? and vanishes somewhere, so (sj, si) = 0 everywhere on S2. Hence we conclude

P = span{si,...,Sp}

is a totally isotropic p-dimensional subspace of I'(E).

Now consider F' = Ly41 @ ... ® L,. On each Ly, p+1 < g < r, there is also a section s,.
But now ¢i(Lg) = 0 so s, does not necessarily vanish somewhere. However, the complex linearly
extended pairing (-,-) defines an isomorphism E — E*. In this isomorphism, line bundles with
positive and negative first Chern class map to one another, hence F maps to itself. That’s to say,
(-,-) defines a non-degenerate bilinear form F' — F. Hence we are able to take an orthonormal
basis spi1,...,s, of sections of F' such that (sq,st) = dg:. Then the following [§] — p sections

€1 = Sp+1 T 1Spt2, €2 = Spy3 + iSpya,---
is a totally isotropic collection of sections. Denote Fy = span{ey, ... ,e[%]_p}.
Let W = & @ Fy. Then we claim W is a totally isotropic subspace. Indeed, any section s;
of positive line bundle and s, of zero line bundle must satisfy (s;,sq) = 0, since the pairing gives

a holomorphic function on S? that vanishes somewhere. Furthermore, dim¢(W) = dime(2) +
dimc(Fo) = p+ [5] — p = [§], as desired. This concludes the proof of the claim. O

Remark 4.16. This theorem puts an essential obstruction on high homotopy groups for a manifold
to carry a PIC metric. However, the question of understanding the fundamental group of a PIC
manifold remains open. In fact, we know S* x 3, equipped with product metric, is strictly PIC
(R1234 = 0 for any orthonormal vectors ey, ..., e4). And by [MW93], the connected sum of two PIC
manifolds supports a PIC metric. For example, we have m1((S! x S3)#(S! x S3)) = Fy, the free
group with two generators. This observation leads to the following conjecture on the fundamental
group of PIC manifolds.

Conjecture 4.17. M is a PIC manifold. Then the fundamental group of M is virtually free. That
is, there exists F' C 71(M) with F being free and finite index.

It is known this conjecture in PIC manifold is related to a more geometric statement of PIC
manifold. The following geometric property implies the above conjecture.

Conjecture 4.18. If M is x-PIC, that is, for any isotropic plane II, K (II) > x > 0, and ¥2 ¢ M
is a stable minimal disk, then for every p € ¥, we have d(p, %) < ¢/+/k.

4.2. Fundamental group of PIC manifolds. Previously we’ve shown all high homotopy groups
of a PIC manifold must vanish. The fundamental group of a PIC manifold turns out to be quite
different.

In low dimensional cases, all 2 or 3 dimensional manifolds are PIC since there is no isotropic
plane. 4-dimensional PIC manifolds have been completely classified by Hamilton and Chen-Zhu
using Ricci flow, since the PIC condition is preserved under Ricci flow. The following result is the
best known about the fundamental group of a high dimensional PIC manifold till today, with a
proof that also comes from a variational approach.

Theorem 4.19 ([Fra03]). Suppose n > 5 and M™ is a PIC manifold. Then there is no free Abelian
subgroup of w1 (M) of rank greater than 1.

Ideally from a variational point of view one may try the following type of argument. Assume
7@ Z € m (M), then there exists conformal minimal branched immersion u : T2 — M such that
uy : ™1 (T?) — Z & 7 isomorphically. The question is, can we have stable tori in a PIC manifold?
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Unfortunately the answer is yes. For example one may take the Cartesian product S* x S"/Z,,
where S™/Z, is the lens space with positive constant curvature. Clearly this gives a PIC manifold.
Then we may choose a shortest non-contractible geodesic v in S3/ Zyp and S 1 x v will be a stable
tori.

Instead we are going to prove that if we take a sufficiently high degree cover of a stable tori, it
becomes unstable. Before proceeding to proof, we first recall that the complexified second variation
for energy functional implies for stable tori F': ¥ — M, we have

/ R(F., s, Iz, 8)dxdy < / V:s|?dzdy, Vs €T(E),E=F*(NX®C).
P X

If further s is isotropic, then by the PIC condition we’ll have

R/ ]s]szg/ V252 A.
b b

We argue as following that when X is ’large’ enough this cannot happen.

Proof. The proof proceeds in a few steps. Step 1: For any kZ @® kZ C w1 (M) there is a branched
minimal immersion Y; representing kZ & kZ.

Step 2: Suppose for now that for every € > 0, there is a sufficiently large k and a smooth map
f: X — S? satisfying deg f = 1 and |df| < e.

We now use this e-contracting map f to construct ’almost’ holomorphic sections of the bundle
E.

Definition 4.20. Let ¢ > 0. A section s € I'(E) is called e-holomorphic if [i|Vzs]*dA <
€ [x [s]dA.

A immediate consequence from the second variation formula is, if € < x then any e-holomorphic
isotropic section s must vanish.

Now for the holomorphic bundle E over T2, since the complex linearly expanded pairing (-, )
gives an isomorphism E — E*  we have ¢;(E) = 0. Note that we are unable to obtain a section of
E since Riemann-Roch theorem only guarantees a section when c¢;(E) > 0. However if £ is a line
bundle over T2 with ¢ (£) = 2 then ¢1 (€ ® E) > 0, hence we are able to get a bundle of ¢ ® E.

Take a line bundle L over S? with ¢;(L) = 2, and let ¢ = f*(L). Then c1(&) = deg(f)c1(L) = 2.
Extend complex pairing (+,-) to (EQF) X (EQF) — £®¢&, denoted also by (-, ), by (t1 ®s1,t2®s2) =
(s1,82)t1 @to. Also let H(¢ ® E) be the space of holomorphic sections of £ ® E. Then by Riemann-
Roch,

dmH(E®E) > ci1(det((E @ E)) = (n—2)c1(§) + c1(E) =2n — 4.

Step 3: We are ready to find a holomorphic isotropic section of ¢ ® E. By Riemann-Roch, if ¢ is
a holomorphic section such that (¢,0) = 0 at more than 2¢;(§) = 4 points, then (o, o) is identically
0. Define, H, = {0 € HE®E) : (0,0); = 0}. Note that dimc(H({ ® F)) = d > 2n — 4. Take
5 arbitrary points 1, ..., 25 on T2. We want to argue the intersection ﬂ;’:lH j is nonempty. Now
each Hj is defined by a homogeneous degree 2 polynomial on H({ ® E) ~ C%, it can be viewed as
a (d — 2) dimensional hypersurface in CP?2. By the intersection formula, we have

dim ("W_,H;) >d—6>2n—10>0, ifn>5.

So there exists o € O?ZIH]-. That means, (0,0) =0in { ® E.

Step 4: From o obtained above we construct almost holomorphic isotropic section s of F.

Notice if 7* is a section of the dual bundle £* then 7*(0) = s is a section of E. Of course 7* is
not holomorphic and neither is s, but if we are able to construct 7* through pull back by f of a
section on L then by e-contractibility of f the derivative of s = 7*(o) will be sufficiently small.

We look at the bundle L over S2. Let U,,U_ be small open neighborhoods of the south and
north poles, and S,,.5_ be the southern and northern hemisphere. By contractibility of disk the
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bundle L* over Uy, U_ is trivial. Take t] a trivialization of L* in S? — U_ such that [t}| = 1
pointwisely on Sy. Then use cut-off function to extend ¢ identically 0 on U_. Similarly define ¢3.
Then we can find sections #},t5 € T'(L*) such that 1 < |t]| + |[t5| < 2 everywhere on S2. Define,
using the e-contracting map f, 7; = f*(t), j = 1,2. Then by the chain rule

VT =IV(t5o )l = [(Vf)o (VE))] < Ce.
Let s; = Tf(a), j =1,2. Then we have

|51/ + [s2f* = |7 () + |73 (o)
= (I ]* + 75 *)lo]?

> |ol*.

Therefore either [ [s1|?dA > 3 [i |0|?dA or [; |s1]?dA > 1[5, |o|?dA is true. We therefore get a

section s = s1 or so with
/ 15[2dA < C’e/ o2dA < 20/ 152,
) ) )

which concludes the proof. O

The same method shows

Theorem 4.21. If ¥ is a stable incompressible torus in k-PIC manifold then a sufficiently high
degree covering of ¥ is unstable.

Finally we prove the existence of the e-contracting map f.

Theorem 4.22. Given u: T? — M with u,(m1(T?)) = kZOkZ. Then there exists f : (T2, u*g) —
S? with deg(f) = 1 and |df| < € if k is sufficiently large.

Proof. For each k, denote by 3 the preimage of u. Recall the systole of ¥ is defined by the
number

£ = min{L(v) : v is a noncontractible closed geodesic in X}.

Since M is compact it is routine to check that for k large enough the surface ¥; has large systole,
say, larger than L.

Look at the universal cover & of 3. Since X is noncompact with compact quotient ¥, there is a
geodesic line 7 : R — 3. Choose T very large, T >> L and define D; : ¥ — R by

Dy(z) =d(z,r(T)) - T.

And define Ds(x) to be the signed distance function to r such that Dy attains positive on one
component of ¥ — r and negative on the other.

On the square region

0= {01 < %, 1Dol < 7).

define f : Q — [-% L] x [-£ L] by f = (Dy,D,). Clearly f is a Lipschitz function, and with
proper choice of T', |df| < 2. Then the boundary of 2 is mapped into the boundary of the square of
length L/2 in R2. Also (0) is the only point mapped to 0 in R2. Hence f is a local diffeomorphism,
and in particular, degree 1 map from a neighborhood of r(0) in € to one component of R? — f(99).

We then smooth f out to get a map f from Q — Br5(0) C R2, and compose f with a contracting
map which takes By 5(0) to B(0). Finally, glue By /5(0) to a punctured sphere 52 — ¢ and map
the every point in the fundamental domain of ¥ in X to ¢, we obtain the desired map. ([l
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5. POSITIVE SCALAR CURVATURE
5.1. Positive curvature obstructing stability.

Theorem 5.1 (J. Simons, [Sim68]). There are no stable minimal submanifolds (of any codimen-
sion) in the round (S™, go).

Proof sketch. The idea is to think of S™ as being the unit sphere in R"*! and then use the ambient
Killing vector fields that represent isometries. If V;, ¢ = 1,...,n + 1, represents those ambient
Killing fields and X; = (V;)! are their projections to the sphere, then one can show that on any

minimal ¥ ¢ 8™ we have
n+1

D 8N(X, X) <0
=1

and therefore there can be no stable minimal surfaces. O

This result was later improved to work under much weaker regularity assumptions by Lawson
and Simons.

Theorem 5.2 (Lawson-Simons, [LS73|). There are no stable stationary integral currents, mod p
currents, or varifolds in the round sphere (S™, go).

Remark 5.3. Currents and varifolds don’t come equipped with a normal bundle, so variations
have to be considered in the ambient space and therefore stability is interpreted as the lack of
ambient flows that decrease mass.

Li and Yau showed in [LY82] that, in the case k = 2, the flow ¢; generated by one of the vector
fields X; actually satisfies |¢¢(3)| < |X|, £ # 0, provided X is not entirely contained in any equator
of S™. Consequently, index(¥?) > n + 1. El Soufi and Ilias handled the higher dimensional case in
[EST92).

There is a conjecture that aims to generalized these stability obstructions to 1/4-pinched mani-
folds.

Conjecture 5.4 (Lawson-Simons conjecture). Let (S™, g) be 1/4-pinched; i.e., 1/4 < K < 1. Then
there exists no stable minimal ¥ c S™.

This is known to hold true in the following cases:

(1) when ¥ =~ S?, by Micallef-Moore, and
(2) when ¥ is a hypersurface (i.e., codimension 1) in S™ (as we remark in the proposition

below),

but is otherwise open, even when ¥ is a general two dimensional surface.

Proposition 5.5. There are no stable two-sided closed hypersurfaces in a manifold (M™,g) with
positive Ricci curvature.

Proof. The second variation formula for a two-sided ¥"~! C M™ says that if v is a unit normal
field to X, and we vary ¥ along the direction X = ¢v, then

P2 (0) = [ V6l = (Ric(w.) + |AP)g* dy
Therefore if Ric > 0 and ¢ = 1, we have
§2%(1,1) :/ —(Ric(v,v), |A]*) du < 0,
so X is unstable. ” O

Notice that from this we get the following:
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Corollary 5.6. If (M™,g) is compact, Ric > 0, then H,_1(M,Z) = 0.

Remark 5.7. This uses a hard result [FF60] on minimizing volume in homology classes. One
should view this as a sort of counterpart of Bochner’s theorem on the triviality of 1-dimensional
cohomology of closed manifolds with positive Ricci curvature.

The next thing to wonder about, instead of stability, is the geometry or topology of index 1
hypersurfaces. In particular, from min-max theory we know that every Riemannian manifold of
positive curvature has at least one index 1 hypersurface.

Question 5.8. Suppose "1 € M", K > 0, and that index(X) = 1. Can we bound the first Betti
number b1 (X) < ¢(n)?

This is known to hold true, for instance, in the following setting:

Theorem 5.9. If (M3,g) has positive Ricci curvature, then any %2 C M? with index 1 has
genus(X) < 3.

Remark 5.10. Conjecturally the genus bound genus(X) < 3 can be improved to genus(X) < 2, as
the study of Heegard splittings of 3-manifolds suggests.

It is remarkable that positive scalar curvature alone is enough to give very interesting stability
results, this being a consequence of the fact that on hypersurfaces the stability operator can be
written purely in terms of scalar curvature.

Proposition 5.11. If ¥ is minimal then Ric(v,v) + |A|* = £(Rym — Ry, + |A]?).

Proof. Choose an orthonormal basis ej,...,e,_1,e, = . Then
1 n 1 n—1
RlC(V V *RM Z Rznnz - 5 Z Rabba = _5 Z Rabba
a,b=1 a,b=1
1 n—1
(Gauss equation) = —3 Z [Rabba haahwy + hib}
a,b=1
1 1 1
= —= —H? - Z|A)2
2R2 + 5 2| |
So indeed when H = 0, Ric(v,v) + |A|> = $Ry — 4 Rs + 1A% O

As a result of this proposition, we can rewrite our stability operator as
5 (pr0) = [ IVl = 5 (Rar = R +14P)°
in which case we find that
Stability < A\(—A — %(RM —~Rs +1]4]%) >0
5.2. Bonnet-type theorem.
Proposition 5.12. If Ry; > Kk > 0, then A\ (—Ax + %Rz) > k/2 for every stable X..
Proof. By stability,

1
L1976l = [ R = Rs + 14P)?

K 1
>2 [ 2 -2 | Ryy?
_2/290 2/2 ')
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SO

1
[1veit+grse =5 [ 2
> 2 2 Js
for all ¢ € C2°(X), and the result follows. O

Corollary 5.13. When n = 3, X is a 2-dimensional surface with Ry, = 2Kx,, so the conclusion
above can be rewritten as A\ (—Ax + Kyx) > k/2.

We recall Bonnet’s theorem:

Theorem 5.14 (Bonnet’s theorem). Let (X2, g) be such that Kx, > r > 0. Then the length of any
stable geodesic is < 7w/\/k. Consequently,

(1) If 3 is complete, then it is also compact with diam < 7/\/k.
(2) If ¥ has boundary, then dist(p,0%) < w/v/k for all p € 3.

Our goal is to show that this extends beyond surfaces with positive Gauss curvature, to surfaces
that satisfy the eigenvalue positivity condition A\(—A 4+ K) > k/2.

Theorem 5.15. If (X2, g) satisfies \(—Ayx, + Kx) > k/2 > 0, then

(1) if ¥ is complete, it must have diam < 27/+/k, and
(2) if ¥ has boundary, then dist(p, %) < 2w /\/k for allp € X.

Remark 5.16. We can no longer estimate the lengths of stable geodesics. Instead we will construct
a new functional on curves, and study stable critical points of that and provide upper bounds on
the (original) length. This will clearly bound the lengths of the optimal (original) geodesics.

Proof. Let u > 0 be the first eigenfunction of —Ay, + K, so that —Ayu+ Kxu = Au with A > k/2.
We construct a compact 3-manifold M3 = ¥ x S! and endow it with a warped product metric
g +u?dt?. By a calculation, we see that the scalar curvature R of M3 satisfies

- A “Asu+ K
R= oKy — 908U _pazut fsu
u u

Let s+ v(s) be any curve in ¥ parametrized by arclength, s € [0,¢]. Note that v x S! is a surface
in M3, whose area is

YA
area b= u(y(s)) ds £ Ly (7).
(v x §1) /0 (7(s)) ds £ Ly ()

The functional L, will be our new functional on curves of 3. The result will follow once we establish
the following

Claim 5.17. Stable curves for L, satisfy the Bonnet-type property £ < 27 /+/k.

The stability inequality applied to the surface v x S' € M3 yields

1 ~  ~ - -
/ [§(R+ |A]?) — K} ©?udtds < / |V|? udt ds.
xSt xSt

We restrict to S'-invariant variations ¢ = ¢(s). This way |[Ve|? = (¢/)? and the t-integrals drop
out. Estimating R > x and |A| > 0 we get:

K l Ku// ¢
/ gpzuds—i-/ apQudSS/ ()2 uds
2 Jo 0o u 0
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for all ¢ with p(0) = ¢(¢) = 0. Since we don’t actually know what v is, our goal is to choose
¢ that makes the u dependence disappear. To that end, we choose ¢ = u 24 for some ¢ with
¥(0) = 1 (£) = 0. The stability inequality becomes

/w +/ Ly </ [ w2 4w 1/%}

Estimating the entire (non-negative) right hand side by its double, and expanding the square

K 2 12 1 9 22 !
S [ [+ @ - v

61 N " u

(e v’ = 562) = [ 5(5) v v 2w+ (- )

u u

and canceling the u” terms on the left and right hand sides, we conclude that

g/jw? < 2/0é<w’>2

and therefore that \j(d?/dt?) > k/4 on the interval (0,¢). But we know that \i(d?/dt?) = 72 /¢,
and the result follows. O

5.3. Some obstructions to positive scalar curvature. As an immediate corollary of the
Bonnet-type theorem we proved we get:

Corollary 5.18. Let (M3, g) have Ry > 0. Then any closed stable minimal surface X2 C M3 is
necessarily diffeomorphic to S* or RP?.

Proof. The universal cover Y of ¥ is also a stable minimal immersion, and by the Bonnet-type
theorem it is in fact compact. By the classification of surfaces, ¥ ~ S? and the claim follows. [

Theorem 5.19. If M3 is compact and carries a metric gy of non-positive sectional curvature, then
it cannot carry any metric of positive scalar curvature.

Proof. We argue by contradiction and assume that g were a metric of positive scalar curvature on
M3. By compactness, R, > k and there exists C' > 0 so that Clg<gyg<Cy.

By Cartan-Hadamard, the universal covering space (M, go) of (M, go) is diffeomorphic to R? via
the exponential map, and gy > §. Therefore § < Cg on M = R3. This upper bound of the flat
metric § in terms of the positive scalar curvature metric g will yield the contradiction.

Consider the z'2? plane in R3, and the z3 axis which cuts it orthogonally. For R > 0, let Cg be
the circle of radius R on the z'z? plane. Any point ¢ on the z3 axis satisfies ds(q, Cr) > R, and
therefore dy(q,Cr) > R/C.

Solve the Plateau problem with metric g and boundary Cg. For topological reasons, the g-
area minimizing disk 2 will intersect the z® axis at some point ¢. By the previous estimate,
dg(q,Cr) > R/C — o0 as R — oo. However, our Bonnet-type theorem places a uniform upper
bound on dg4(g, Cgr) in terms of x. This contradicts the existence of g. O

In fact the following stronger result is also true provided the proof above is appropriately gener-
alized.

Theorem 5.20. Let (M3,g) be closed and with sectional curvature K < 0. If M3 is closed and
there exists a map f : My — M of nonzero degree, then My has no metric of positive scalar
curvature.

Corollary 5.21. If M3 is as above and Mg s any closed manifold, then M# My cannot carry a
metric of positive scalar curvature.
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23 axis

»2 »L

1,.2
Ch xx* plane

FIGURE 3. Solving the Plateau problem, 032 = Ck.

5.4. Asymptotically flat manifolds and ADM mass. It turns out that the tools we’ve devel-
oped for positive scalar curvature in the compact setting can be used to understand certain complete
noncompact manifolds with nonnegative scalar curvature-namely, those which look approximately
Euclidean outside large compact sets.

Definition 5.22. We say that (M™", g) is asymptotically flat of order p > %52 itﬂ Ry = O(|z|7"%)
for some o > 0, and there exists a compact K C M such that M \ K ~ R?\ Bj so that under the
induced Euclidean coordinates z',...,2™ on M \ K, the metric g satisfies the fall-off conditions
gij = 51']‘ + Qi with

|vij ()] + || s ()| + |2]* |00a; ()] < ela| 7P

for some ¢ > 0.

Definition 5.23. For any manifold we define the ADM mass to be

1 :
"= Jim T(gz‘j,j = gjji)v'do

where S, represents the coordinate radius r sphere, ' = |g§7| is the Euclidean outward unit normal,

and do the Euclidean volume element of S,. The normalization constant ¢(n) above is chosen so

that \
Mg n=2
1+ —— = ms.
m << + 2|a;]”_2> 5) m

Example 5.24 (Schwarzschild metrics). The metrics

For example, ¢(3) = 167.

4

m 2
=14+ — )
gon <+2rx\n-2)

we’re using to normalize our ADM mass definition are called (Riemannian) mass m Schwarzschild
metrics and correspond to static black hole solutions of the Einstein equations. The parameter m
reflects their “total mass.” Notice that for m = 0 we get flat Fuclidean space, whereas for m < 0
the metrics we get are incomplete with a nonremouvable singularity at x = 0.

2The most general requirement for scalar curvature is R, € L', but we adopt this stronger decay assumption for
expository convenience.
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Proposition 5.25. All complete, rotationally symmetric and scalar flat metrics are conformally
flat and asymptotically flat:
4
g = umé

with
m

2rn—2
for some constant m > 0. In other words, Schwarzschild metrics (for m € R) are the only
rotationally symmetric and scalar-flat manifolds (without any asymptotic assumptions).

u=u(r)=1+

Proof. Rotational symmetry is characterized by metrics on R™ \ {0} (or R") given by g = dr? +
f(r)? gsn—1. Notice that by changing coordinates it follows that every such g is conformally flat,
ie. .\

g=un-29
for some radial function u = u(r) > 0. Scalar flatness translates to Au = 0 with respect to the flat
metric, and since u is radial we have

Au=0<& 1 90 <r"18u> =0

=1 gr or
ou b
gzﬁﬁu:a—krnd.
We may rescale so that a = 1, and therefore
u(r) =1+ 2:;_2
for some m € R, thus recovering the various Schwarzschild metrics. O

It’s not clear that the definition of ADM mass actually makes sense because it’s not clear that
the limit even exists. This is so because the integrand g;;; — g;j;: is only of order |z|7P~!, and
p+ 1> n/2 does not guarantee existence of the limit. Nevertheless, it is true that ADM mass is
well defined.

Lemma 5.26. The ADM mass m is well defined on asymptotically flat manifolds (M™, g) of order
p> 52

Proof of lemma. On the asymptotic flat chart we have

R = gijij — gjjai + O((g — 6)0%g) + O((9g)?).

’72;072

Notice that the error terms are both of order |z with 2p 4+ 2 > n, so integrable. The scalar

curvature is also assumed to be integrable, so
/ \9i.ji — 9jgail dp < 00
M\K
By the divergence theorem we have that for all ry < r9 sufficiently large
/ (gij,j_gjj,i)’/ida_/ (gijd—gjj,i)yidg :/ div(giji—gjj,i) dx :/ (9ig.ji—9jjai) dx
STQ 1 BT2 \BTl BTQ \BTI

Therefore we the limit as ro — oo will exist by the dominated convergence theorem since we know
that gi;ji — gjjii € L'(dy) and we can exchange dyu with dx integration.

Finally we need to check the formula for scalar curvature. By computing in coordinates we know
that
ko1 ke 1
U5 = 597 (965 + 9jei = 9i5.0) = 5(9wij + 9kji — 9ijn) + O((g — 6)9g),
and since Rijkg =0 — 0 + T2 +1?,

R = Ffzk - F’;iu +0((g — 6)0%9)
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1 1
= Gitki — ik~ 59kkiii + O((g — 6)0%g) + O((99)*)
= Gijji — 9iijj + O((g — 6)9g) + O((09)?)
as claimed. 0

5.5. Positive mass theorem. Now, while we’ve just shown that ADM mass is well-defined, it’s
far from clear that it represents a non-negative quantityﬂ The positive mass theorem validates this
assertion:

Theorem 5.27 (Positive mass theorem). If (M", g) is complete and asymptotically flat with Rg > 0
then m >0, and m = 0 if and only if (M™, g) = (R™, ).

In this section we proceed to check this theorem in the base case n = 3, though the steps that
hold true for all dimensions are performed in full generality. We present the proof as a sequence of
reductions. The plan is:

(1) Reduce to simpler asymptotic behavior at infinity, replacing our asymptotically flat manifold
with a so-called asymptotically conformally flat manifold that is also scalar-flat.

(2) Arguing by contradiction, reduce m < 0 to a manifold that is precisely Euclidean outside a
compact set.

(3) Argue that the manifold obtained above can be turned into a nonflat manifold ~ T34 M3
with non-negative scalar curvature, obtaining a contradiction and thus finishing the proof.

Throughout this proof we will make extensive use of the conformal Laplacian,
Lou = Aju — ¢, Rqu
where ¢, = 4(’}17__21) (not to be confused with the ADM mass-normalizing factor ¢(n)). The signifi-
4

cance of the conformal Laplacian is that under a conformal change of metric u»=2 g we have
(5.1) R(uﬁ) = —cfllu_%ngu.

Step 1. Simplification of asymptotics.
Definition 5.28. We say that a manifold (M",g) is asymptotically conformally flat if outside a

compact set we have g = w2 with u — 1 at co. If such a manifold is additionally scalar flat,
then by (5.1)) it follows that Au = 0.

Remark 5.29. If u is as above, then since it is harmonic on Euclidean space we know how to
expand it into spherical harmonics near infinity. The expansion is

A

+O(|z[*™).

Proposition 5.30. If u is as above, then m(uﬁé) = A.
Proof. This is just a calculation. O

Theorem 5.31. Let (M™,g) be asymptotically flat with Ry > 0. Then for every € > 0 there exists
a metric g that is asymptotically conformally flat, scalar flat, and with mg < mgy + €.

Proof. First we check the following:
Claim 5.32. Without loss of generality we may assume that Ry = 0.

3ADM mass can be negative: Schwarzschild metrics with m < 0 certainly have negative mass. To get non-
negativity we ought to impose particular conditions on the boundary of M3, or assume that there is no boundary.
We do the latter.
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Proof of claim. If R, > 0 but is not identically zero, then we may solve the equation Lj,u =
Agu —c(n)Rqu =0, u > 0, u — 1 at infinity. (Some further analysis is required to show that this
can be done.) The solution u(z) of this PDE can be expanded as

u(z )—1+2‘ =z + Ox(lal )

for some a € R. For r > 0 large we have

0 < ¢(n) RyudVy = AgqudVy = / dog
B, aBr

Br
n—2 a
[ e L B
and therefore a < 0. Settingﬁzuﬁg yields Rz = 0 and mg = my + a < my. O

Now fix 0 > 0 large and take a cut-off function x(r) such that x(r) =1 for r < o, x(r) = 0 for
r>20,0< Y (r) <c/oforo <r <20, |X"(r)| <c/o? for o <r < 20. Set

g=x9+(1—=x)s
where 0 is Euclidean. This metric agrees with g in |z| < ¢ and is Euclidean on |z| > 20, so
asymptotically flat. Note that R; = 0 except in the annulus o < |z| < 20, where |Rg| = O(|z|7772).
Even though R may not be non-negative, one can show with some analysis that we can uniquely
solve
Lu = Agu+c(n)Ryu =0, w >0, wu— 1 at infinity

provided [, |R§|% dV5 is small enough. (This comes from the Sobolev inequality.) This is indeed
the case here since
Ryl < clz| 77 = |Rgl? < Jaf20P72)

and g (p +2) > n(n4+2) > n for n > 3, and we can therefore make the integral be sufficiently small

by sendlng the (still free) parameter o — co.

4
Having solved this equation, we may set § = u»-2g, which is globally scalar flat, and asymptot-
ically conformally flat since g = 0 for |z| > 20. Furthermore, as o — oo we get mg — m. O

Why is this reduction desirable? If we can prove the positive mass theorem for these special
asymptotics, then we can prove the general case by arguing that if a metric g with my < 0 were to
exist, we could find a nearby metric g with the simplified asymptotics which also satisfies mg < 0,
a contradiction.

Step 2. An observation of Lohkamp and reduction to a compact problem.

Having reduced to asymptotically conformally flat asymptotics and zero scalar curvature, we
know that g = un—24 for some harmonic u. By expanding u along spherical harmonics near infinity
we have

u(z) =14+ + Oo(|z)™™),

2| ’n | pn—2
where m is the ADM mass of the manifold because of Proposition [5.30

Theorem 5.33. If in these asymptotics we have m < 0, then outside large compact sets we can
perturb g to another metric which has non-negative scalar curvature and is exactly Euclidean near

infinity.
Proof. Recall that Au = 0. We first make the observation that if ¢ is any positive smooth concave
4
function, then Av(u) = o' (u)Au + " (u)|Vul? <0, so R(1(u)n24;;) > 0.
Now since we're assuming m < 0, we know that for |z| large, u(z) approaches 1 from below.
Construct a smooth concave function b : R — R such that v is the identity on (—oo0,1 — €),
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increasing, and ) = 1 —¢/2 on (1 — ¢,00). Then perturb g outside a large compact set to g;; =
4
Yp(u)»=26;;. Evidently, g = g in a compact region, g is Euclidean near infinity, and Rg > 0. O

Step 3. Obtaining a T"#M7{* with R > 0.

Having reduced to a manifold (M"™, g) with R > 0 and which is Euclidean outside a compact set,
let C' be a sufficiently large coordinate cube such that M \ C' ~ R™ \ B;. Then construct a new
manifold (M’, ¢") by periodically patching copies of C' together. This manifold clearly has a free,
properly discontinuous Z" action, and therefore we can further construct

(M”,g”) o (M/,g/)/Zn
to be a compact manifold with non-negative scalar curvature, which is topologically T"#M7*. Since
curvature is local in nature, the scalar curvature descends to this manifold and therefore we will
have produced a scalar non-negative T"# M7'.
Now we need to specialize to n = 3. Our goal is to further reduce to the setting of Corollary

5.21l This requires some general understanding of the variational theory of scalar curvature. To
that end, we need the following:

Definition 5.34. The total scalar curvature functional (also known as the Einstein-Hilbert func-
tional) is

R(g) = /M R, dV,.

Theorem 5.35. If M™ carries no metrics of positive scalar curvature, then either we can perturb
any g with Ry > 0 to have positive scalar curvature, or g satisfies Ricy = 0

Proof. Let gy have Ry, > 0. There are two cases to consider.

The first case is the one in which Ry, > 0 at some point. Let u > 0 be the first eigenfunction
of Ly, and A € R the corresponding eigenvalue. Since Ry, > 0, but does not vanish identically,
it follows that A\ = A(Lg,) > 0. In fact, A > 0 because otherwise the first eigenfunction v > 0
of Ly, would be superharmonic on M™, so constant, so Ry, would be constant, so zero-which is

e n+2

false. Therefore A > 0, so R(uﬁgo) = —c, u »=2(—=A)u > 0. This is also impossible, since we're
assuming that M"™ cannot carry positive scalar curvature.

The second case to consider is that of Ry, = 0. We need to check that Ricy, = 0. Consider an
arbitrary variation g, = go + th, and set A(t) = A\g(—Lg,). We know that A(¢) is smooth, A(t) <0,
and A(0) = 0. So X'(0) = 0.

For every ¢ near 0, let u; be the first eigenfunction of Ly, normalized to have [}, uf dVy, =V (go),
so that ug = 1. Then

V(go)A(t) = / Vusl? + e(n) Ry u? dV,
M

and differentiating in t at t =0,

0= V@O =<l [ |G| v,

= c(n) /M (67 Rij + g iy dV,,

= c(n) /M<—h, Ricg,) dVy,

where the second term has dropped off because it is a boundary term and M = (). Therefore,
(—h,Ricg,) = 0 for all perturbations h, so Ricg, = 0.

Alternatively, the second case can also be seen to hold true by Ricci flow. If R4 > 0, then
running Ricci flow for a short time would deform a non-Ricci flat gg to positive scalar curvature,
which is impossible, so gg is Ricci flat. ]
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Remark 5.36. There do exist nontrivial Ricci-flat metrics on manifolds which don’t admit any
positive scalar curvature metrics: K3 manifolds are such an example. Furthermore, Calabi-Yau
manifolds are examples in 6 dimensions of Ricci-flat metrics which are not perturbable to positive
scalar curvature metrics, although the background manifold does carry such metrics.

This theorem is closely related with the following trichotomy theorem:

Theorem 5.37 (Trichotomy theorem). Let (M",g), n > 3, and [g] = {e**g : u € C®(M™)}.
Then:

(1) [g] contains a metric with R > 0 if and only if A(—L) > 0.
(2) [g] contains a metric with R =0 if and only if \(—L) = 0.
(3) [g] contains a metric with R < 0 if and only if A(—L) < 0.

Now we return to the positive mass theorem. By applying Theorem [5.35| in combination with
Corollary when n = 3, we conclude that the compact manifold T3#M; we have constructed
(by assuming m < 0, by way of contradiction) must in fact be Ricci flat. But of course Ricci flat
metrics are flat when n = 3, so our original metric must have been flat, which contradicts that
m < 0.

Remark 5.38 (Higher dimensions). There are two parts of the proof that don’t immediately
generalize to arbitrary dimensions as stated: the fact that T"# M' doesn’t carry scalar positive
metrics (which we only checked for n = 3), and the fact that g being Ricci flat implies that the
original background manifold is flat (this is trivial when n = 3).

In fact, only the first of those statements is nontrivial. The second statement follows from the
general fact that every asymptotically flat and Ricci flat manifold (M™, g) is necessarily Euclidean
as one can see, for example, by volume comparison on large balls.

The second statement is known to hold true up to n < 7 via an inductive argument that reduces
to the 3-dimensional case, and by a theorem of Smale ([Sma93]) and some additional modifications
can likely be adapted to n = 8 as well. For larger n there are hard technical obstacles in the minimal
surface proof, but it has been shown by Witten ([Wit81], [PT82]) through the use of spinors that
the positive mass theorem holds true for all (M™,g) in all dimensions, provided M™ admits a spin
structure.

5.6. Rigidity case. We have yet to prove the rigidity case of the positive mass theorem. It follows
from the following observation that works in all dimensions.

Theorem 5.39 (Rigidity case of PMT). Assume m > 0 for every asymptotically flat (M", g) with
R>0. If (M™,g) has m =0, then (M"™,g) = (R", ).

Proof. If R > 0 at some point then we can solve Lu = 0, u — 1 at oo, and show that

4

m(un—2g) —m(g) = —c(n) lim —da = / AgudVy =m(g) — / R, dV, < 0.

r—00
We have already shown that m(uﬁg) >0, so m(g) > 0, a contradiction.
So we can assume that R = 0. Let h be a C2° symmetric (0,2)-tensor, and g; = g + th. The

metrics ¢g; are still asymptotically flat, and in fact coincide with g at infinity. Of course, these
metrics don’t satisfy R > 0 anymore. For ¢ small, let u; > 0 be such that Lu; = 0, ut — 1 at

infinity (which we can indeed solve, like we did in Claim |5.32)). Then define g, = ut * g¢, which
satisfy R(gy) = 0. Observe, further, that ugp =1 and gy = g.
Define m(t) = m(g;), and observe that

m(t) = —c(n) lim Ou doy = —c(n)/ Ag,up dVy = —c(n)/ Ry uy dV;.
9 M M

T—>00 ST‘ 1%
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This is differentiable in ¢ and we know by assumption that m(t) > 0, with m(0) = m(go) = 0, so
~

m/(0) = 0. We can also compute m/(0) by differentiation, which gives

0 = #(0) = —c(n) / (h, Ric,) V.
M
Recall that h were an arbitrary symmetric (0, 2)-tensor, and conclude that ¢ is Ricci flat, thus flat
by remark O
6. CALIBRATED GEOMETRY
6.1. Definitions and examples.

Definition 6.1. A smooth p-form ¢ on a Riemannian manifold (M, g) is called a calibrating
form or simply a calibration if it is closed (i.e. dp = 0) and satisfies

(6.1) 0 (§) <1,VaxeMandV € e Gy(T,M),

where we denote by G,(V') the set of all simple, unit length p-vectors in APV, which can be identified
with the set of oriented p-planes in V.

Definition 6.2. Given a calibration ¢ and z € M, the contact set at x is defined to be
(6.2) {§ € Gp(TaM)pa(§) = 1}.

Definition 6.3. Given a calibration ¢, a p-dimensional submanifold >7? is called p—calibrated,
or just calibrated, if

(6.3) or(TpX) =1, Vel

Remark 6.4. Note that a calibrated submanifold is automatically oriented because ¢ restricts to
a volume form.

One of the most important properties of calibrated submanifolds is that they minimize area in
their relative homology class. More precisely, we have the following theorem.

Theorem 6.5. Suppose Y. is p-calibrated and let Xg be another oriented p-submanifold with 0% =
0X. Then |X| < 3.

Proof. By assumption we can write ¥ — Xg = ORPT!. Then by Stokes’ theorem and the closedness

R E—EO

—/go—/ 0.

by Yo

\ZIZ/w=/ o < [Sol.
by Yo

The first equality is due to the fact that X is calibrated, while the third equality follows from

(@ 0

Before we go on let’s give some examples of calibrations and calibrated submanifolds.

Therefore

Example 6.6.

(1) Let Q@ € M be an open subset and let v be a smooth function with |Vr|y = 1. Then the
integral curves of Vr are length-minimizing.



(6.6)
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Proof. Consider the 1-form dr, which is certainly closed. Moreover, for all x € €2 and each
unit vector v € T, M,

dr(v) = g(Vr,v) <1,

with equality holding if and only if v = V. This shows that dr is a calibration and the
integral curves of Vr are calibrated. g

Suppose u is a solution to the minimal surface equation in Q € R™ and let ¥ € R* ! denote
the graph of w. Then X is calibrated in ) x R.

Proof. Take an orthonormal frame ey, ..., e,11 with ey, ..., e, tangent to > and e, 1 nor-
mal. Let w',...,w""! be the dual co-frame. Let ¢ = w! A--- Aw™ and extend ¢ to 2 x R
so that it does not depend on z™*!. The minimal surface equation implies that ¢ is closed.
Moreover, is satisfied since ¢ is a wedge product of 1-forms dual to unit vectors.
Finally, 3 is (p-calibrated because ¢ restricts to the volume form on ¥ by construction. [

More generally, if we have a foliation of a Riemannian manifold M™ by hypersurfaces, and
if at each x € M we define @, to be the volume form of the leaf containing x, then ¢ is
closed if and only if each leaf is a minimal hypersurface.
Consider a Kdihler manifold (M?",g,J) and recall that the Kdihler form is defined by
w(X,Y) = g(JX,Y). The simplest example of a Kdihler manifold is R®*™ with the stan-
dard complex structure J, i.e.

0 0 0 0
(8x3) oyl’ (8y7) OxJ
Letting

d2? = da? +idy’, dz' = da? —idy’,

we find that the Kdahler form in this case is
w=35 Z; dz) NdZ.
=

Now let’s return to the general situation and fix p < n. Define a 2p-form on M?" by
= I%w”. Then @ is a calibration and the calibrated submanifolds are exactly the complex
submanifolds.

Proof. First note that since M is Kéhler, dw = 0 and hence ¢ is closed. Next we verify
(6.1). More precisely, for any x € M we claim that

1
—wP(§) < 1,V § € Gop(T M) (Wirtinger’s inequality)
p!

with equality holding if and only if £ represents a complex p-plane (J-invariant oriented
real 2p-plane). The case p = 1 is already handled in Proposition SO we can assume
that p > 2. For £ € Go,(T, M), let E denote the oriented 2p-plane represented by £. Since
w(X,Y) = ¢(JX,Y) we can view w as a non-degenerate skew-symmetric bilinear form on
E. By linear algebra we can find a positive basis ey, fi,...,ep, fp of E such that

W(ei,ej) = w(fl?fj) = Oa w(eivfj) = )\15@]
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Furthermore, up to re-ordering we can assume that \y > A2 > --- > A, and that \,_; > 0.

Then, with respect to the basis {e1, fi,...,ep, fp}, w is represented by the matrix
0 X\
-1 O

In other words, letting {#°} and {7} be dual to {e;} and {f;} respectively, we have

p
w= Z N0 AT
i=1

Hence, noting that 2-forms commute, we deduce that
(6.7) © = ;!wp =M M) ATEA AP ATP = (Mg A)E
Now notice that since e;, f; have unit length,
i =wleg, fi) = g(Jes, fi) <1
Hence by , we see that

©(€) <1,

with equality holding if and only if A\ =--- = A, = 1, in which case we have

g(Jei, fi) = w(es, fi) = 1.

Thus by the equality case of Cauchy-Schwarz inequality, we conclude that Je; = f; and
hence J& =&, i.e. £ represents a complex p-plane. ]

Remark 6.7.

(1) Concerning example (3), it is worth noting that if we have a foliation F of an n-manifold
M by p-dimensional minimal submanifolds where n — p > 2, then in general the p-form
@ constructed by the same procedure will not be closed. Nonetheless, if we have a p + 1-
submanifold N that is tangent to F, i.e. F restricts to a foliation of N, then ¢|y is closed.

(2) An interesting question is that given a p-dimensional oriented foliation of a compact n-
manifold M, can we equip M with a Riemannian metric so that the leaves of the foliation
become minimal submanifolds? In this direction, Dennis Sullivan proved that the answer
is yes if and only if the foliation is ”homologically taut”. See [Sul79| for details.

Remark 6.8. Example (4) shows that any complex submanifold of a Kéahler manifold minimizes
volume and is thus stable minimal. The theorem of Micallef [Mic84] that we presented earlier shows
that the converse is true in some cases. Below we list two more results in this direction.

Theorem 6.9. (Lawson-Simons, [LS73]) Any stable minimal submanifold ¥?P of CP" is + holo-
morphic.

Theorem 6.10. (Siu-Yau, [SY80]) Every stable minimal S? in a compact Kihler manifold with
positive bisectional curvature is £ holomorphic.
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6.2. The Special Lagrangian Calibration. We now introduce another calibration of great geo-
metric interest; namely the special Lagrangian calibtration. We take (R?",.J), which has the
structure of an n-dimensional vector space over C, as our ambient space, although the calibration
makes sense under more general settings.

Before we go on, let us recall some facts from complex linear algebra. As in the previous section,
on (R?",.J) we introduce coordinates so that holds and define dz7, dz’ as in (6.5)). An R-linear
map of R?" to itself is said to be complex if it commutes with J, in which case it becomes a C-linear
map of (R?", J) ~ C". Thus, a complex linear map A can be represented either as a (2n x 2n)-real
matrix of an (n x n)-complex matrix. If we let det A and detc A denote the determinants of the
two matrices, respectively, then we have the following relation whose proof will be given after the
next paragraph.

Lemma 6.11. det A = |detc A|?

The unitary group, denoted U(n), is defined to be
(6.8) {A€0(2n)|AJ = JA}

Elements in U(n) have the property that they preserve both the inner-product on R?" and the
Kahler form. Moreover, by Lemma for all A € U(n) we have |detc A| = 1 and we define the
special unitary group as

(6.9) SU(n) ={A € U(n)| dgtA =1}
Proof of Lemma[6.11. With respect to the R-basis {%, R 8%, I %} of R?" we have
[0 —I, ]
J= [ p o
Thus, since A commutes with J, it must have the following form with respect to the same basis as
above: i
_| o B
a= % 2]

It is then not hard to see that the complex (n x n)-matrix representing A is exactly « + /3.
Performing some column operations, we find that

- a [ a+if B | a+if 0
detA—det[_B a]_det[—ﬂ—i—ia a]—det[ 0 o—ifB
= det(a + iB) det(a — i) = | det(a 4 i8)|* = |detc A|?
O

Definition 6.12. Given ¢ € G, (R?"), let L be the oriented n-plane it represents. L is called a
Lagrangian plane if

0 0
(6.10) &= A(ﬁxl ARERWA 8x”)
¢ is called a special Lagrangian plane if holds for some A € SU(n). A submanifold
" C R?" is said to be a Lagrangian (special Lagrangian, resp.) submanifold if 7Y is a Lagrangian
(special Lagrangian, resp.) plane for each x € .

, for some A € U(n).

For the discussions to follow it will be useful to know some alternative Chara%terisations of

Langrangian planes. Recall that the Kihler form w on (R?",.J) is given by w = % SNode NdF =
j=1

n . .
daxd A dy’.
j=1
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Lemma 6.13. Let £ and L be as in Definition[6.19 The following are equivalent:
(a) @(X,Y) =0, ¥, X,Y € L

(b) The 1-form Z y/dz? is closed on L.
j=1
(c) J(L) = L.
(d) ¢ (6x1Aaxn)f0r50meA€U( n).
(e) |d (ul A Nup)| =1, where {ui,--- ,up} is an orthonormal basis of L.

In the case where L is the graph of a linear function f : Q — R™, with  simply-connected,
the above are equivalent to
(f) f = Vu, with u quadratic.
Proof.
(1) ((a) < (b)) Simply note that d(3>_ y/da?) = —w.
(2) ((a) & (¢)) Since w(X,Y) = (JX,Y), (a) holds if and only if JX 1Y, VX,Y € L, which
is exactly (c).
(3) ((d) = (a)) Condition (d) implies that {A 357 }n:1 is an orthonormal basis for L. More-
over, since A € O(2n) and commutes with J, we have that
0 0 o 0 o 0
A=) A(=— ) =w(=—,=—)=(=—,=—) =0
WAz ) Alg 7)) = wlg 5 5.%) <8yﬂ’8xk> ,
for all 1 < j,k <n. Thus (a) holds.

(4) ((¢) = (d)) Let {u1,ug,---,up} be an orthonormal basis for L. Then by assumption
{uy,ug, -+ ,Un, Ju, -, Ju,} is an orthonormal basis for R?®. This implies that there
exists A € U(n) such that A(%) = u;. Clearly & = A(% Ao A %).

(5) ((e) & (d))) Let {ui,---,un} be an orthonormal basis for L. Then there is a unique
complex linear map A with A(a%J) =uj, ie. EE=uA---Auy = A(a%1 ARERVA ag%) Since

0 d 0
Algg) = we = ol (u) 5 + dy’ (u) 5
= (da? +idy’)(u )i = d2 (up) = 0
Y k) o i
the complex matrix representation of A is given by [dz? (uy)]. Thus,
(6.11) dz(uy A -+ Auy) = det[dz? (ug)] = d(e:t A

On the other hand, since A(%) = Ju;, the real matrix representation of A is given by

Uy o Up Jur oo Juy
| . |
Using lemma [6.11] we see that

|dz(up A -+ Auy)|? = |d(e:3t Al =det A
(6.12) <Jup| - |up||Jur| - - - [Jup| =1,

with equality holding if and only if {uy,--- , Ju,} is an orthonormal basis for R?", in which
case A € U(n).
(6) ((b) < (f) in the graphical case) By assumption, L = {(z, f(x))|z € Q} and (b) translates

into
d(>_ fida’) =
j=1
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Since 2 is simply-connected, this is equivalent to the existence of a function u on € such
that f; = %, i.e. f = Vu. Since f is linear, u must be quadratic.

0

Remark 6.14. The proof for (b) < (f) in the graphical case also shows that if ¥" is an oriented
n-submanifold of R?" which is the graph of a function f :  — R™ with  simpy-connected, then
Y is Lagrangian if and only if f = Vu for some v : Q — R.

Now we introduce the special Lagrangian calibration, defined by
(6.13) ¢ = Re(dz)

Theorem 6.15. ¢ is a calibration and the calibrated submanifolds are exactly the special Lagrangian
submanifolds.

Proof. Apparently ¢ is closed. Moreover, given & € G,(R?"), if we assume & = uj A --- A up
(i.e. {u1,---,up} is a positive orthonormal basis of L) and let A be the complex linear map with
A(:%) = uj, then by (6.11)) and (6.12),

OxJ
(§) = Redz(§) = Redet A < |det A| < 1,

with equality holding if and only if detc A = 1, which by (6.12]) and is equivalent to A € SU(n).
Thus we’ve shown that ¢ is a calibration and ¢ restricts to the volume form of ¢ if and only if &
represents a special Lagrangian plane. Recalling definition [6.12] the proof is complete. O

Remark 6.16. Fix 0 € R, the form
s = Re(e ¥dz)
is also a calibrating form. The contact set consists of the planes { = A(% AR 8%) where

A € U(n) with det A = €. Submanifolds calibrated by g are called special Lagrangian with
phase 6.

As mentioned in Remark given a graphical Lagrangian submanifold X" = graph(f) over
some simply-connected domain 2, we can find u : £ — R so that f = Vu. We now derive the
associated PDE satisfied by u in the case X is special Lagrangian.

Since ¥ is the graph of Vu, we know that at each x € ¥, if we let

0 0

Uj = @"—Ukjaiyk,

then v1 A --- Awvy, is a real multiple of the unit simple n-vector £ representing 7T,>. Now by Lemma
we know that dz(€) is a unit complex number for z € 3. Thus by Definition Y is special
Lagrangian with respect to some orientation if and only if dz(§) = %1, or equivalently,

Im(dz(€)) = 0 < Im(dz(vy A --- Avy)) = 0 < Imdet(dz’ (vg,)) = 0
(6.14) & Imdet(I +iD?u) = 0
Recalling the following identity
det(I +tB) =1+ ttr(B) + - + t*o4(B) + - - - + t" det(B),
where o (B) denotes the k-th elementary symmetric polynomial in the eiganvalues of B, ((6.14) is
equivalent to
(3]

(6.15) i (—=1)* o9k 41(D*u) = 0.
k=0
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If we diagonalize D?u at a point and let Ap,..., A, be the eigenvalues, (6.14) becomes

n

n
Im(H(l +id;)) =0 Ztan_l A =0 mod 7
k=1 k=1

6.3. Varitational Problems for (special) Lagrangian Submanifolds. First we give an inter-
esting characterization for special Lagrangian submanifolds with some phase 6.

Proposition 6.17. Let X" be a connected Lagrangian submanifold of R*™. Then ¥ is calibrated
by @y for some 0 if and only if ¥ is minimal.

Proof. By Theorem the Lagrangian condition implies that there exists 6 : ¥ — R/27Z so that
dz(T,%) = 9@ vz e 3.

Locally there exists a lift 6 of # to an R-valued function, and the following identity holds

(6.16) H = J(V0),

where H denotes the mean curavture vector of . A proof of this will be given at the end. It
follows that, by connectedness, H = 0 if and only if 8 is constant, which is equivalent to X being
calibrated by some g, .

Now we prove (6.16). The key fact is that dz is a parallel (n,0)-form on R?". Since ¥ is La-
grangian, by Theorem we can choose a local orthonormal frame ey, ..., e, so that {ey, Jeg}1_,;
is an orthonormal basis for R?”. Moreover, we can assume that the tangent components of Ve, ek
vanish at a point. Now for each j, we compute

ej(dz(er,... en)) = Zdz( R V.

—Z ek Jep)dz(er, ..., Jeg, ... en)

n

i(Ve,er - Jeg)dz(er, ... ek, .-, en)

(Zvejek Jek> dz(e1,...,en).

Note that by the symmetries of the second fundamental form, the term in parentheses is exactly
H - Je;. On the other hand,

ej(dz(er, ... en)) = ej(eié) =iej(0)dz(eq,. .., en)
= i(V0-e;)dz(er,. .., en).
Comparing the two computations above, we get for each j,
H-Jej=V0-¢; <= H=J(V0).
O

Remark 6.18. Given a function h : ¥ — R, the associated Hamiltonian vector field is given
by

Xn=JVh
and has the nice property that Lx,w = 0, i.e. w is preserved by the flow generated by Xj. From
this and , we deduce that the mean curvature vector is locally Hamiltonian and thus the
mean curvature flow preserves the Lagrangian condition.
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Proposition [6.17] suggests that in order to produce a special Lagrangian submanifold in a ho-
mology class, we can try minimizing volume among homologous Lagrangian competitors. More
precisely, we consider the following variational problem, which makes sense in any Kéahler manifold
M2

Given a class [Yo] € H"(M?",Z) with ¥y Lagrangian, find ¥ € [X] such that

|¥] = inf{|X'||¥' € [X0], ¥’ Lagrangian}.

By Remark any sufficiently regular solution to the Lagrangian Plateau problem must be
minimal, for if not, then by the remark, the variation generated by H = J(V#) would produce a
homologous Lagrangian submanifold with less volume.

Now we turn our focus to a more general setting, that is, minimal Lagrangian submanifolds of a
Kahler manifold.

Suppose (M?",g,J) is a Kéihler manifold, ¥ C M?" is a Lagrangian submanifold. Remember
that if we take e1,...,e, to be a basis of the real tangent space 1,3, then Jeq,..., Je, is a basis
of the normal bundle of . The second fundamental form is given by

Y = (Veej, Jer).
Now by a simple calculation,
Y = (Veiej, Jer) = —(ej, Ve, (Jex)) = (Jej, Ve ex) = hly.
k ‘ j
On %, let 0y = (JH)* be the 1-form dual to JH, where H is the mean curvature vector. Also

define a 2-form p such that p(X,Y) = Ric(JX,Y). Then we have the following relationship between
these forms.

Proposition 6.19. d(0g) = 3p|s.
Proof. Let eq,...,epn,Je1, ..., Je, be a basis normal at one point, n1,...,n, be dual 1-forms of
el,...,en. Then Oy =5, hfink. So
1 .
i = Vihin; Ay = §(thi% — Vihi)nj A
1 A .
= §(th2i — Vihi)ng A

1
= 5(6] <v€k €, J€7,> - ek‘<v6]’ €i, Jel>)77,] A Nk

1

= §<RM(€J', ek)ei, Jei)n; Ak

1.
=3 Ric(Jej, ex)nj A i
1
The last step can be done as following: for any two tangent vectors X,Y,

Ric(X,JY) = > R(X,ei,e;, JY) + R(X, Je;, Je;, JY)

== Z —R(X, €, Jei, Y) + R(X, Jei, €, Y)
=> R(X,Y,e;, Jes),
by the first Bianchi identity. O

Definition 6.20. We call a Kihler manifold (M?", g) Kihler-Eistein, if there is some constant c
such that p = cw where p is the Ricci form and w the Kéhler form.
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Corollary 6.21. If (M?", g) is Kihler-Einstein and X" is a Lagrangian submanifold, then dfy = 0.
In particular, mean curvature flow starting from % perserves Lagrangian condition.

Corollary 6.22. If (M?",g) is Kdihler-Einstein and X" is regular submanifold, and ¥ is stationary
for volume among Lagrangian deformation, then Hy = 0. That is, ¥ is stationary for volume for
all deformations.

Proof. Consider the mean curvature flow from 3. By the short time existence for mean curvature
flow for regular submanifolds, we get a family ¥; of submanifolds. By the previous corollary each
> is Lagrangian. Therefore from the Lagrangian stationary condition we know

d
t=0
On the other hand,
d
—| = = / H|*dpu.
il 5= [
Therefore we conclude H =0 on X. O

Definition 6.23. A manifold (M?",g,J) is called Calabi-Yau, if it’s Kihler and there exists a
nonzero parallel (n,0) form.

On a Calabi-Yau manifold we can always write the parallel (n,0) form as a = f(2)dz' A... Ad2"
in local holomorphic coordinates, with Vo = 0. We also normalize a so that ||| = 27/2.

Proposition 6.24. Suppose X" C M?" is Lagrangian submanifold in a Calabi- Yau manifold. Then
als = e®d Vols, where B is a function satisfying dfB = 0.

Proof. Again take an orthonormal basis eq,...,e,, Jeq,...,Je,. Then

ej(aler,...,en)) = (Ve,a)(er, ... e +Z a(er, ..., Veek), ... en)

n

Z aleq, ..., ]kJel,...,en)

E ]kael,...,ek,...,en)

k
=il a(er,. .., en).
Suppose locally we have a function 3 so that a(ey,...,e,) = €. Then e;(e") = iH/e? immedi-
ately gives 3; = HY. O

Now if in addition H = 0 on X, then 3 is a constant.

Corollary 6.25. Suppose M?" is Calabi- Yau manifold, X" C ‘MQ" is a submanifold. Then X is
Lagrangian and minimal if and only if ¥ is calibrated by Re(e™%a) for some 6.

When people study minimal Lagrangian submanifold of K&hler manifolds, there are three classes
of Lagrangian manifolds that often come into play.

(1) Hamiltonian stationary submanifolds. ¥ C M is called Hamiltonian stationary, if for any
compactly supported function h € C°(M), we have dx,> = 0, where X; = J(Vh) is
the Hamiltonian vector field associated to h. If 3 is Hamiltonian stationary, then by first
variation formula, we have

(SXhZ:/diVE(Xh)
%
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~— [

—— [ J(Vh),H)
b

- /E (Vh, JH)
_ /Z (dh, B57).

Therefore dx, % = 0 for all compactly supported smooth h if and only if 660 = 0.

Note that on a Kéahler-Eistein manifold we already dfy = 0 for Lagrangian submanifold
3. So ¥ being Hamiltonian stationary is equivalent to #7 being harmonic.
Lagrangian stationary. We call ¥ Lagrangian stationary if it is a critical point for any
smooth deformation through Lagrangian submanifolds. That is,

d

Y| —
7 X[ =0

t=0

if each 3; is Lagrangian.

There are two examples to keep in mind. The first example is a unit circle S* in R%. The
mean curvature vector H of S! is just the position vector, and JH, the vector obtained
by rotating the mean curvature vector, is just the unit tangent vector of S'. From this
observation, for any compactly supported smooth function i on S', the pairing (Vh, JH) =
Rh'(s), where s € [0,27] is the usual parameter of S'. However S! is not Lagrangian
stationary, since any deformation in R? is Lagrangian, and S! is definitely not a stationary
submanifold of R2.

The second example is the Clifford torus 7" C R??, T™ given by S}l X ...S%n,

the circles thought of being embedded into R2. For a similar reason as before the Clifford
torus is Hamiltonian stationary and not Lagrangian stationary. It is also an open question
that whether Clifford tori minimize volume among Hamiltonian deformations.
Minimal Lagrangian submanifolds. If ¥ is simuteneously a minimal submanifold and La-
grangian, then we call it minimal Lagrangian. We will study minimal Lagrangian sub-
manifold in more detail. Now let us look at the following example of Lagrangian Plateau
problem.

Let I' € R* be a curve. By a fact in symplectic geometry, I' = 932 for some Lagrangian
surface ¥ if and only if the following condition holds

2 . .
/ E xdy’ = 0.
ris

By means of minimal surface theory, there exists a least area orientable surface > bounding
I satisfying that ¥ is Lagrangian stationary.

each of

Theorem 6.26 ([McL96]). Let ¥ € M?", with M a Calabi- Yau manifold. Suppose X is a reqular
special Lagrangian submanifold. Then the moduli space of special Lagrangian submanifold ¥ near
Yo is a smooth manifold of dimension by (Xg).

Proof. Consider all surfaces nearby 3o as a graph over 3. That is, suppose

Y = {exp,(v(z)) : v € T'(NXp), v is smooth}.

Now the condition ¥y being special Lagrangian gives us w|y, = 0,Im(a)|y, = 0. Define a map
F: F(NZO) — 52(20) X 5”(20) by letting

F(v) = (exp(v)*(w), Im(exp(v)*(a))) -
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The linearization at 0 is given by (which will be calculated later)

F/0)(v) = (d((7)#), —d = (J0)H)) .

So F'(0) is surjective onto the Cartesian product of Banach space of exact 2-forms with the
Banach space of exact n-forms, choosing a proper topology (W2 topology, for example). Moreover,
the null space of F'(0) is precisely the space of harmonic 1-forms. By the inverse function theorem
and Hodge theory, all nearby special Lagrangian submanifold form a smooth manifold of dimension
equal to b1 (Xp).

To conclude the proof, we only need to calculate the linearization. The calculation proceeds as
follows.

d
dt|—g

Where L, is the Lie derivative in v direction. By Cartan’s formula,

Low = iy (dw) + d(iyw) = d(ipw) = d((Jv)#),

F(tv) = (Lyw, L,Ima).

L,(Ima) = i, (d(Imav)) + d(ip(Imar)) = Im(d(ip)).
Suppose locally we have v = Z?:l a;Je;, a; real. Then on ¥y we have

iy(dz' AL A dZY) = z:(fl)j‘”'ldz1 Ao NdZ ()AL A dR
j=1
And dz7 (v) = dz(ajJe;) = ia;.
On the other hand,
0y = (Ju)* = =) (1) adz' A AdZTT AT AL A dR"
We got the desired equality. O

6.4. Minimizing volume among Lagrangians. Given the success of the area minimization
problem in minimal surface theory, it is reasonable to ask:

Question 6.27. Is there a regularity theory for area minimization if we only consider Lagrangian
competitors?

We need to be more precise about what sort of area minimization problem we are trying to solve.
There are various possibilities:

(1) Plateau problem. Given I'"~! € R?", find an oriented Lagrangian X" with ¥ = I' and
|¥| = min{|¥'| : ¥’ Lagragian and 9%’ =T'}.

(2) Minimization in homology. Suppose M?" is compact and that o € H,(M;Z) is a
homology class that contains at least one Lagrangian submanifold. We wish to find a
Lagrangian submanifold ¥ € o with

|¥| = min{|¥'| : ¥ is Lagrangian and belongs to homology class a}.

Remark 6.28. When n = 2 there is an alternative approach to area minimization, similar to the
mapping problem for minimal surfaces, which we will address in the next section.

As with minimal surface theory, existence and weak compactness play a key role in the theory of
area minimization among Lagrangians. To that end we need to work in a larger class of submanifolds
than just smooth submanifolds. We work with:
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Definition 6.29. A Lagragian integral current 7' = (X", 0,¢) is an integral current H™-a.e. of
whose tangent spaces are Lagrangian. Recall that an integral current acts of smooth compactly
supported n-forms as

[ = el 0w ana),
and that its total mass is defined to be
M(T) = O(z)dH"(x).
En
There is a standard weak topology associated with Lagrangian integral currents, the weak-x
topology. In particular, T; — T if for all compactly supported smooth n-forms 7,

Jor= Jo
T; T

We note in passing that this is equivalent to the so-called flat convergence.
Lagrangian integral currents do satisfy a compactness theorem, like we wanted.

Theorem 6.30. Let {T;} be a sequence of Lagrangian integral currents with M(T;) < C. Then there
exists a Lagrangian integral current T with M(T') < C such that, after passing to a subsequence,
Ty — T. Furthermore, if the T; all belong to the same homology class c, then T does too. Likewise,

if 0T; =T for all i, then 0T =T too.

Remark 6.31. Other than the additional conclusion that the limit is Lagrangian, this follows
from the Federer-Fleming theory of integral currents [FF60]. To check that the limit current is
Lagrangian (i.e., Lagrangians are closed under weak convergence) we note that it suffices to check

/w/\nzO
T

for every compactly supported smooth (n — 2)-form 7, where w is the Kahler form. This is an
integral condition, and is indeed preserved by weak limits.

A large part of the regularity theory for area minimization in the minimal surface setting relies
on the monotonicity formula, which helps establish upper bounds for volumes on all scales. Un-
fortunately, the general theory of Lagrangian integral currents and Lagrangian minimizers lacks a
monotonicity formula.

Proposition 6.32. The cylinder ¥? = S'(e) x [0,1] € R2 x R2 = R* = {(2!, y', 22,9?)} solves the
Lagrangian Plateau problem.

Proof. Let 3 be any other Lagrangian surface with Y = 0% (in the sense of currents). For a.e.

t € (0,1), © N {a? < t} is a surface with boundary and therefore £ N {22 = ¢} consists of finitely
many closed curves. By Stokes’s theorem and the Lagrangian property,

0= /~ w= /~ (—yda?) —/ (—y'dz!) = /~ (—y'dzt) — me?
En{z2<t} En{z2=t} Sl(e)x{0} Sn{z2=t}

By Green’s theorem the integral on the right measures + the total signed area enclosed by the
projections of the curves comprising N {2? = t} onto the z'y' plane. Then by the isoperimetric
inequality on R?,

HY (N {z? =t}) > 2ne, for ace. t € (0,1).
Now by the coarea formula,

~ 1 ~
area(X) > / HY XN {z? =t})dt > 2re,
0

which is the area of the cylinder ¥. The result follows since ¥ is evidently Lagrangian. t
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Remark 6.33. We just showed that the cylinder X2 = S(¢) x [0,1] C R* solves the Lagrangian
Plateau problem, but the monotonicity formula evidently doesn’t apply.

6.5. Lagrangian 2D mapping problem. When n = 2 we may attempt to minimize area as with
the mapping problem in minimal surface theory:

(1) (Classical) Plateau problem. Given I' C R?", minimize |u(D)| over all u : D — R?"?
such that u(0D) =T" and u(D) is Lagrangian.
(2) Minimization in homotopy. Suppose M?" is compact, Y, is a compact surface, and
0@ X — M?" is such that ug(3,) is Lagrangian. Find u : 3, — M?" such that u(X,) is
Lagrangian and
|u(2,)| = min{|u/(S,)| where v’ : 53, — M?" is Lagrangian and homotopic to ug}.
Like before, it is convenient to formulate a weak notion of Lagrangian maps.

Definition 6.34. A map u € WhH2(22, M?") is weakly Lagrangian if u*w = 0 a.e. on %, where w
is the Kéhler form of M?". Equivalently, u is weakly Lagrangian if

/qu*w:()

The following observation is the mapping problem equivalent of Theorem [6.30

for all f € CX(X).

Proposition 6.35. For every C > 0, the set
{u € WH2(X22 M?™) is weakly Lagrangian and ||u|j1 2 < C}
1s closed in the weak topology.

Proof. We present the proof in the case M?" = R?", though the argument carries through to the
general case with some modifications.
Let w; — wu, with [Ju|12, |luli2 < C. On R?" the Kéhler form w is exact: w = dn. Let

f € C®(X). Then
0—/fuw—/fud77—/fdu77 /df/\ufn.

The latter is a linear combination (with smooth and appropriately convergent coefficients) of first
derivatives of u;, and therefore we may take i — oo and deduce

—/EdeU*nz/Zfd(U*n)Z/Efu*W-

The claim follows since f € C2°(X) was arbitrary. O

In the Lagrangian 2D mapping problem, unlike the previous section, it turns out that we do
have a notion of monotonicity and therefore there is a way to work out a regularity theory as in
the case of minimal surfaces. This has been carried out in [SW01] when n = 2. Putting the issue
of existence of minimizers to the side, the regularity theory here goes as follows:

(1) Derive a monotonicity formula that allows for upper volume control on arbitrarily small
scales for weakly Lagrangian, weakly conformal maps.

(2) Use this volume control to derive a global Holder estimate for weakly Lagrangian, weakly
conformal maps.

(3) Introduce the concept of tangent cones of weakly Lagrangian, weakly conformal maps and
study the relationship between singularities and the cone’s flatness or lack thereof.

Putting this all together we get:
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Theorem 6.36 (Schoen-Wolfson, [SWOI]). Let u : D — M* be an area minimizing weakly La-
grangian, weakly conformal map. If D' is a smaller disk, there is a finite set S C D’ such that
u\D/\S is a smooth immersion. Every point in S is either a branch point of u or a point at which
u has a nonflat tangent cone. The map u is smooth everywhere except across points with nonflat
tangent cones, where it is Lipschitz.

Remark 6.37. The requirement that u be weakly conformal can be arranged alongside the exis-
tence theory.

6.6. Lagrangian cones. Lagrangian cones come up in the process of blowing up singular points
as in the minimal surface theory.

Jp

F1GURE 4. Cone link, Legendrian links

Definition 6.38. The link X! of an m-dimensional cone C in R2" is defined to be ¥ = S?"~1NnC.
It is said to be Legendrian when 7,5 C (Jp)* for all p € 3.

From this point on we specialize to m = 2. It is not hard to prove that:
Proposition 6.39. A cone C is Lagrangian if and only if its link ¥ is Legendrian.

Proof. We have that T,C = T, & (p). (=) If C is Lagrangian then J(7,C) L T,,C, so every
v € T, must be L to Jp, so ¥ is Legendrian.

(<) If ¥ is Legendrian then Jp L T,% and therefore Jp L T,C. Likewise, since Tp¥ is 1-
dimensional we evidently have J(1),X) L T,% and, finally, for all v € 7,3,

<JU7p> = UJ(’U,p) = —(/J(p,’U) = —<Jp,U> = 07
so, altogether, J(1),C') L T,C which shows that C' is Lagrangian. O
Corollary 6.40. C' is minimal and Lagrangian if and only if ¥ is minimal and Legendrian.

A singular area minimizing Lagrangian map u : D — R?" will give rise to an area minimizing
Lagrangian tangent cone C? C R?". It is important to understand the structure of these cones for
regularity theory and to do so we restrict to n = 2. The following theorem of [SWO01] exhausts the
list of Hamiltonian stationary 2-cones in R*:

Theorem 6.41 ([SWOI]). Links of Hamiltonian stationary cones C? C R* look like
(s) 1 \/geisx/p/q
Y\s) = , )
VP4 \i/pe sVl

with 0 < s < 2m,/pq and p, q coprime.
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Proof. Let B be the Lagrangian angle, which satisfies H = JVf or, equivalently, H ow = —df.
Note that § is degree 0 homogeneous on C'. We claim that df is a harmonic 1-form on X.
Let X = JVh be a Hamiltonian vector field. If ¥ is Hamiltonian stationary then

O:/E<X,H>:/E<JVh,H>:—/Ew(H,Vh):—/Z(HJw,dh):—/hd(HJw)

b
for all smooth compactly supported h, so 6(H.w) = 0. By a computation (see [SWO01]) we know
that d(H.ow) = 0 on R% in particular we have d(H.w) = 0 and §(H.w) = 0 which makes
H_w = —df a harmonic 1-form on X, as claimed.

In turn this means that § is harmonic and therefore of the form S = 2as. Writing ~(s) =
(71(s),72(s)) we find that the condition for it to be a Legendrian curve on the sphere, the complex
2 x 2 matrix (7,v') must be SU(2). Since det(y,7') = ¢?. The result follows by fairly straightfor-
ward algebraic manipulations. O

Remark 6.42. These curves C), , are not great circles except when p = ¢ = 1, and in general they
lie on Clifford tori in S3. If either p = 1 or ¢ = 1 then the curves are unknotted; otherwise they
are knotted.

By studying the second variation formula one obtains:

Theorem 6.43. If |p — q| > 1 then Cp, is strictly unstable for Hamiltonian variations compactly
supported on C'\ {0}. For |p—q| =1, Cpq is strictly stable.

By an indirect argument one can further show:

Theorem 6.44. There exists at least one p for which the Hamiltonian stationary Cp p41 minimizes
area among Lagrangian competitors homeomorphic to a disk.

Remark 6.45. The argument above is indirect, and so it is not known which cones Cp, 41 are
minimizers.

6.7. Monotonicity and regularity of minimizers in 2D. First let’s recall the monotonicity
formula for stationary submanifolds of Euclidean space:

Theorem 6.46 (Monotonicity for minimal submanifolds). Let ¥ € R™ be a minimal submanifold
without boundary. Then

%(a—’ﬂz N Bg|) > 0.

Proof. This follows from the first variation formula. Let x denote the position vector field, r = |x|,
¢ some smooth cutoff function, and X = {(r)x. Then by stationarity

0= / divs X dp = / kC(r) + rl ()Y dp.
b b
The result follows by taking ¢ to approximate the indicator function of [0, 0] C R. O

This monotonicity formula is very important for regularity theory in the minimal surface setting.
Ideally, we can find a similar useful and monotone quantity in the Lagrangian area minimization
setting.

Monotonicity in this new setting is more difficult. We’ve seen in a previous section that S*(e) x
R is Hamiltonian stationary (in fact, minimizing among Lagrangians) and yet it evidently does
not satisfy monotonicity. One problem is that we don’t have very good choices of (Hamiltonian)
deformations. For example if h(z,y) = h(x!, 22 y',4?) is a Hamiltonian function with compact
support, then its associated Hamiltonian vector field

0 0
Xh - hz87y - hyaix
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preserves w and volume. Ideally we can make use of vector fields that represent dilations or other
collapsing deformations.

Definition 6.47. Let u : ¥ — R* be a Lagrangian map and v : S' — ¥ be a curve into X. If 5 is
such that w = dn on R* (e.g., n = 2dy — ydxr) then we define

period(vy) = /u*n.
g

The Lagrangian map u : ¥ — R* is said to be exact if all its periods vanish. In that case u*7n is an
exact 1-form.

Proposition 6.48. The period of v does not depend on our particular choice of n and only depends
on the homology class [y] € Hi(X,Z).

Proof. Let w = dn/ = dn. Then d(n—n') =0, son — 7' is a closed 1-form, so  — 7 = di) on R*, so

/Vu*n—[/u*n':/vu*(n—n'):/vu*dw:Q

Likewise, if 4/ is another closed curve with [v'] — [y] =0 € H1(X,Z), then v — ' = 9Q and

/un /un /un—/ u*dn = 0,
o

since u is a Lagrangian map. ]
The following alternative characterization of exactness of Lagrangian maps will be useful:

Proposition 6.49. Endow R® with coordinates (z,y, ) = (z*, 22, y',y%, ) and consider the pro-
jection m : (z,y,¢) — (z,y) onto R*. Let a = dp — (zdy — ydx) be the contact 1-form on R®. A
Lagrangian map u : ¥ — R* is exact if and only if it admits a Legendrian lift u : ¥ — R>, i.e.,
there exists u with mou = u and u*a = 0.

Proof. If u admits a Legendrian lift @, then we have 0 = u*a = u*dp — u*n, so u*n = u*n is an
exact 1-form on 3, so u : ¥ — R* is Lagrangian. Conversely, if u : ¥ — R? is exact and Lagrangian,
then u*n = d¢ for a function ¢ on ¥. The map u = (u, ¢) is then Legendrian. O

Not every Lagrangian map is exact, but instead they are locally exact in a suitable sense. This
is good enough for the purposes of regularity theory.

Definition 6.50. A diffeomorphism F on R is a contact transformation if F*a = fa for a scalar
field f. Note that if u is a horizontal Legendrian map then so is F' o u.

There is a large class of contact transformations on R®. In fact, a computation shows that:

Proposition 6.51. If h = h(x,y,¢) is smooth, then the vector field

0 0

0 0 0
Xp=hyg——hy— — — +y— |+ (—2h+ (xhy + —
n=nh ” hy - hy (l‘ ~ty y> (—2h + (zhy + yhy))

generates contact diffeomorphisms.

We now vaguely describe the proof of the monotonicity formula.

Auxiliary variables. First we will need to introduce new coordinates. Recall that in the minimal
surface case, monotonicity was obtained by plugging X = x = Vs, s = %(a:2 + ?) into the first
variation formula. To that end, introduce:

(1) We use s = 1(2% 4 ?) in this setting, too. Its associated vector field is
0 0
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(2) We will also use the ¢ coordinate function, whose associated vector field is
0 0
= — B R = — prng J s)-
X, <x8x+y8y> Vs (Xs)

(3) Write § = /52 + 2, which will play the role of the square of the distance function, and
define
t=1logs  and 0 = arctan(yp/s) € [-7/2,7/2].
Equivalently, t, 6 satisfy t 4 i0 = log(s + i¢p).
(4) We will be considering Hamiltonian maps in these new ¢, 6 coordinates; i.e., n(¢,0). The
divergence of the vector field generated by 7 is computed to be

divy X, = (219 — 2779)]VT0\2 — 2(1ge3 " cos @ + ;5 sin )
+ (ntt — Teo — 217t)VT9 . th
Goal. We will try to particularly convenient functions 7 for which the last term drops out. To do

this we will arrange that ny — 199 — 21; = 0 by treating it as a wave equation with time variable 6.
More specifically, we will solve

Nt (t,0) — noa(t,0) — 2n(t,0) =0  on (—oo0,00) X [—7/2,7/2]
n(t,0) =0
n@(t’ 0) = C(ﬂ?

for a smooth function ¢ which is such that
¢ is non-increasing, ¢ = 0 for ¢ > log(1/2) and ((t) = 1 — 2)e’ for t < —c,

for constants ¢, A > 0 to be determined. If we can solve this wave equation, the divergence of X,
collapses to

divy X, = —2G - |[V10|? + 4F
where G =19 —ng; and F = —%e*t(ngt cosf — n;sin6).
Remark 6.52. In regularity theory we mostly care about the monotonicity formula on very small
scales. In our logarithmic coordinates, this translates into the fact that we are only interested in
the behavior of 7 for very negative values of . This explains why we’re diligently prescribing the

behavior of ¢ for ¢ < —c and have it vanish for ¢ > log(1/2). In particular, this construction will
yield a Hamiltonian that is supported in Bj.

Solving the wave equation. Because of the finite speed of propagation in wave equations and
the explicit description of ¢ for ¢ < —¢, we can explicitly compute

n(t,0) =60 — 2X\e'sinf for t < —c — /2.
In this same region we see that

G =1-—2Xe'cosf + 2\e' cosf = 1, and
1
F = —ie*t(—2)\et cos? @ — 2)e' sin? ) = ),
and so divy X, = —2|VT0]2 +4 for t < —c— /2.

Rescaling the support. It was pointed out in Remark that n is a Hamiltonian with support
in B;. The functions

na(tu 0) n(t - QIOgaae)a
F.(t,0) = F(t — 2loga,#), and
Gau(t,0) = G(t — 2loga,0)



286 - TOPICS IN DIFFERENTIAL GEOMETRY - LECTURE NOTES 55

give rise to a Hamiltonian supported in B, instead. This contact vector field satisfies
4
divy X, = —2G,|VT0] + < F,.
a

Monotonicity. The monotonicity formula is obtained, as in the minimal surface case, by studying
the first variation formula at two different scales a and b. This is done by plugging 7,, n into the
first variation formula. The following lemma is key in handling the various error terms:

Lemma 6.53. There exist ¢, X > 0 such that FF > 0, 0 < G < 1. Furthermore, there exists
0o € (0,1) such that G, — Gy > 0 for 0 < b < ya.

By putting this all together we finally obtain:

Theorem 6.54 (Density bounds). The limit
1
O(p) =lim— | F,dA
() ;i% To? /E 7
exists and is upper semicontinuous. Furthermore,

o < Area(u(X) N By) <.

w2
for small enough o > 0.

From this we get:

Theorem 6.55 (Holder regularity). Suppose u : D1 — N* is weakly conformal, evact, and La-
grangian stationary. Write u for the Legendrian lift of w. If there exist ro, ¢ > 0 such that

Area(u(Dy) N B (p)) < cr?

for allp € N, r <o, then u is Hélder continuous in Dyy. If ulsp, : 0D1 — N has finite energy
then w is Holder continuous on all of Dy. There exists eg > 0 such that if Area(u(D1)) < €o, then
there is a uniform upper bound on the global Hélder modulus of continuity of u on D;.

Partial regularity. So far we have shown that our minimizers (should they exist and be exact)
satisfy a monotonicity are globally Holder continuous. By a tilt-excess decay type iteration scheme
(similar to the one in Allard’s theorem) one can show that being weakly close to a plane gives C*¢
bounds and, at this point, this can be improved to C*° bounds by adapting the standard argument.
Furthermore, the exactness condition can be lifted because all Lagrangian maps are locally exact
and regularity is a local result.

Theorem 6.56 (Regularity near almost-flat points). Let u: D — R* be weakly conformal and area
minimizing among Lagrangians in W12(D,R*) N C°(0D) and w(OD) =T. If z € D is such that u
is approximately differentiable at z; i.e., there exists an affine map £ : R? — R* such that

/ u— O + |V — V2 <&,
D
for € sufficiently small, then u is C* near z.

Main regularity. We now come to the main regularity theorem. We study minimizing Lagrangian
maps v : D — N* and separate points p € D into two categories:

(1) Points at which every tangent cone is flat. These form an open set €. In this case the
tangent cones are weakly conformal maps of C into C and can be shown to be of the form
az", a € C. These are the branch points, they are isolated, and w is a smooth immersion
on the open set 2 away from the branch points, and is in fact smooth across the branch
points (with vanishing differential).
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(2) Points at which there exists a nonflat tangent cone. By studying those cones carefully
[SWO1] show that w is Lipschitz across these singular points, and that these points also
form a discrete set.

Putting it altogether we obtain:

Theorem 6.57 (Schoen-Wolfson, [SWOT]). Let u : D — N* be an area minimizing weakly La-
grangian, weakly conformal map. If D' is a smaller disk, there is a finite set S C D’ such that
u\D/\S is a smooth immersion. Every point in S is either a branch point of u or a point at which
u has a nonflat tangent cone. The map u is smooth everywhere except across points with nonflat
tangent cones, where it is Lipschitz.

Remark 6.58. This has been extended to higher codimensions in [Qiu03].
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