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2 NOTES BY CHENG, CHODOSH, EDELEN, HENDERSON, HINTZ, AND MANTOULIDIS

We would like to thank Yi Wang for an excellent class. Please be aware that
the notes are a work in progress; it is likely that we have introduced numerous
typos in our compilation process, and would appreciate it if these are brought to
our attention.

1. MAXIMAL FUNCTIONS

We will be working on R™ and we will denote Lebesgue measure by m.

Definition 1.1. Suppose f € LL (R"). The maximal function is defined as

loc
1
I =8 B a1

Example 1.2. If f is continuous with compact support on R™, then M f(x) ~
Clx|™™ for |z| > 1.
Definition 1.3. Suppose p is a measure (ordinary, signed, or complex). Its maximal

function is defined as

1
M““”‘%Emuﬂ%myéuﬂuM@’

Example 1.4. If 6y is the Dirac measure at 0 € R", then Mdo(z) = Cy |x|™" for
all x € R™.

Maximal functions come up in the study of convolutions, as the following estimate
suggests.

Proposition 1.5. Let f € Llloc(R”), ¢ > 0 smooth, radially symmetric and decreas-
ing. Then
[(f * @) (2)] < Cn AM f (),

where

A= o(x) dz.
R

Proof. 1t suffices to show this for £ = 0. Using n-dimensional spherical coordinates,

(fx¢)0)= [ fly)o(0-y)dy= / h F(r0) ¢(r) 1 db dr
R™ 0 Jsn-t
— [Txm o=~ [T Ay
0 0

where R
A(R) & / f(ro)r"tdodr = / f(z)dx.
0 Jsr-1 |z|<R
By the definition of the maximal function, |A(R)| < C,, R* M f(0). Then

mem<AWQMWMﬂ®MMW=@JU®/WWMMW=%AMﬂ%

0
having integrated by parts in the last step. O
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Proposition 1.6. The following are true:
(1) If f € LP(R™) for p € [1,00], then M f(x) is finite for a.e. x.
(2) If f € LY(R™) then M f € L (R™), and

m{Mf>a} <Cpa " |fll.
(3) If f € LP(R™) for p € (1,00] then M f € LP, and
IMfllLe < Crp |l fllLr-

Remark 1.7. Clearly (1) follows from (2), (3), so we can just prove those. Also,
note that we cannot improve (2) to show M f € L. If f is continuous and compactly
supported, then of course it is L' but M f(x) ~ C,, |x|~™ is not L.

Proof of (2). Let Eo, = {Mf > a}. Then for all x € E, there exists r, > 0 such
that

/ F@)ldy > am(B(z, ).
B(z,rz)

The balls B(z,r,) cover E,. Note that the radii r, are uniformly bounded:

s (L[ wra)”

By the 5-covering lemma there exists a sequence of disjoint balls Bi, Bs, ... among
the B(x,r;) such that U;5B; covers E,. Then

5" Z m(B;) > m(Ey).

At the same time, by our construction of r, we have
3o <Z/ Dy <7,
Z’“Tq;

and the result follows. O
Proof of (3). We use the following trick; define

fila) & {gm 1) > of2

Then | f(z)] < |f1(2)] + /2, so M f(z) < M fi(x) + /2, which in turn gives hat
Eo = {Mf >a} C {Mfi > a/2}.

By (2) on fi,

2.5" 25"
m(E,) <

gt =

[ i@l
|f|>a/2
On the other hand we also have
00 00 9.5
/ \Mf(x)]pdwz/ paP~Im(E,) da §/ paPl / |f(z)| dz do
Rn 0 0 «Q |fI>a/2
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2| f(x)|
— ( / ab~? da) @) de <, / F@)P da
R™ 0 Rn

which implies the required estimate. U

Corollary 1.8 (Differentiation theorem). For f € L. (R") and a.e. x € R™,

. 1 s
lv}igm(B(m/B(x,r)ﬂy)dy_f( )

Proof. Let
Qf(z) £ limsup f,(z) — liminf f,.(z)
rl0 740
where f,.(z) is the mean value of f on B(z,r). If g € C? then it is easy to see that
Qg =0.

If f e LllOC and € > 0 then it is not hard to see that inside a ball B C R" we can
decompose f = g + he where g € C(B) and el (p) < €. Since Qg = 0, we just
need to understand Qh.. But

Qhe(x) <2Mhe(x)
SO 5. 5n
m{Qh. > a} < m{Mh. > a/2} < a | hel| = 0

as € | 0. Since € > 0 were arbitrary, Qf(z) = 0 a.e. x. The fact that the limit is in
fact what we expect it to be follows from the continuity of h — [ f(- + h). O

2. CALDERON-ZYGMUND DECOMPOSITION

The Calderon-Zygmund decomposition, as we will see below, is simultaneously a
decomposition of functions as well as a decomposition of sets.

Theorem 2.1. Let f € LY(R"), f >0, and o > 0 Then we can decompose R™ so
that

(1) R* = FUQ, for disjoint sets F' closed, Q2 open,
(2) f<aae onF,
(3) Q = UrQyx for closed cubes Qi whose interiors are disjoint, and
1
a < f <2
m(Qr) Jo,

Corollary 2.2. We can decompose f > 0 above into a ”"good part” (g) and a "bad
part” (b), i.e. f =g+ b where

(2) = f(zx) forx e F
T o Jou I forec

and

The ”good part”, g, is bounded:
0 <g(z) <2"a.
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The "bad part” has mean value zero on each Qp:

/ b=0.
Qk

Proof of theorem. Since f € L', there exists a large enough diameter such that
1

m(Q’) Q'

for all cubes Q' of said diameter. Decompose R" into a mesh of such cubes. Fixing

such a cube @', inductively divide it into 2" equal cubes Q”. Certainly for each of
them either

f<a

1 1

f<aor
m(@Q") Jor m(@Q") Jor
is true. If the latter is true, stop subdividing the cube. At that stage it’s true that

@ o < i /Q 1< @ /Q f=2ro

Have Q" be one of the Qi of Q. Notice that only countably many such Qj get
constructed. Then set F' = R™\ Q. By the differentiation theorem, f <« on F. O

>«

Corollary 2.3. There exist A, B depending on n such that, for f, a, F, Q, Q as
above,

(1) m(lﬂ) < 21 fllgrs and

@) gy Jo. f < Ba

Proof. This is a trivial consequence of the theorem with A =1, B = 2". ]

There is, however, an alternative proof of the corollary that provides better un-
derstanding for the sets F', 2. It depends on the following lemma whose proof we
skip:

Lemma 2.4. Suppose F' is closed and nonempty. Then

(1) we can decompose its complement Q = R™\ F' as Q = UrQy, for closed cubes
Q. whose interiors are disjoint, and
(2) ¢ diam(Qy) < dist(Qg, F') < ¢ diam(Qy) for a fized constant ¢ = cy,.

Alternative proof of corollary. The correct way to think of F',  is as
FE{Mf<a}and Q= {Mf > al.

These sets are closed and open, respectively, because M f is lower semicontinuous.

Part (1) follows from the main theorem we proved on maximal functions, accord-
ing to which m(Q) < 2 || f|| 1.

Part (2) follows from the lemma above. Fix Qj in the decomposition of €2, and
let py, € F be closest to Q. Choose By, to be the smallest ball centered at pg which
covers Q. Then

c(n)

1 1
QZMf(pk)Zm(Bk)/kaan Qkfzm Qkf
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which is the required result. ]

3. INTERPOLATION OF LP SPACES

In this section we treat the Marcinkiewicz interpolation theorem. We need to
introduce some notation before stating the result.

Definition 3.1. An operator 7 : LP(R") — L{ (R") is said to be of

loc

(1) (strong) type (p,q), for p,q € [1,00], provided [|Tf|[za < C||f|r for all
felrLr,

(2) weak type (p,q), for p € [1,00], ¢ € [1,00), provided m{|Tf| > a} <
(A1 fllze)? for all f € LP,

(3) weak type (p,00) if it is of (strong) type (p,00).

Remark 3.2. The definition of weak (p,c0) is in line with what you would obtain
from weak types (p,q) by setting ¢ = oo. If f € LP then for o > 1 we have
A flee < 1,50 (2| f]lrr)” = 0 and therefore |Tf| < a a.e.

Definition 3.3. Let p1, p2 € [1,00] be given. We denote by LP* 4+ LP2 the set of
functions f that can be decomposed as g + h for g € LP, h € LP2,

Theorem 3.4 (Marcinkiewicz interpolation). Suppose r € (1,00|, and that T :
LYR™) 4+ L"(R™) — Li (R™) satisfies

(1) [T(f + g) ()| < |Tf(x)| + [Tg(x)],
(2) T is of weak type (1,1), and

(3) of weak type (r,r).

Then T is of (strong) type (p,p) for all p € (1,7).

Remark 3.5. It is implicit that we need to check that LP(R") C L'(R") + L"(R").
Indeed we can decompose f € LP as f; + fo where

)i f >y
hi= {O else
and
fy = 0 if[f] >~
2T [ else.

It’s not hard to see that f; € L' and fy € L".

Proof. We treat the case r < oco; the infinite case only requires minor modifications.
Decompose f = fi1 + fo as above for v = . Since

Tf(x)] < [Thi@)]+ |Tf2(x)|
we have
{ITf] > a} C{|Tf1] > /2y UL|T fo| > a/2}
and therefore

m{[Tf] > a} <m{|Tf] > a/2} + m{|Tfa| > a/2}
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Sl + (25 1l

24 24, \" .
Sz e () [
@ JifI>a @ |fl<a
Then
/\Tf|p:p/ P I m{|Tf| > a} da
R’I’L

o0 2A o0 2A,)
Sp/ aP™! 1/ |d1:doz+p/ ozp_l(r)/ |f(2)|" dx do
|f1>a @ JifI<a

(z)] 00
=Chp / / aP? da |f(z)|dz + Cy ) / / a1 da |f(x)|" dz
nJo n Jf(z)]

= Cn,p |f|p
R?’L

Remark 3.6. By carefully keeping track of the constants above we get:

241, (2Ar)’“>>1/”'

p—1 r—p

ITlle < C 1 f]lz with C = <p <

What we’ve done here provides an alternative proof of the maximal function
theorem using Calderon-Zygmund decompositions.

Corollary 3.7. We know that the maximal function operator is of weak type (1,1)
and (00, 00). By the Marcinkiewicz theorem, it is also of type (p,p).

4. SINGULAR INTEGRALS

Equipped with what we’ve developed so far, we can start to understand operators
defined by singular integrals. As a motivating example, we consider the Hilbert
transform, defined as follows:

Definition 4.1. Let f be a real-valued function, the Hilbert transform is defined
to be

1 ee — 1
HfEPV/ J@=Y) 4y (= tim L
™ —00 Yy
whenever the right-hand side exists.

We shall see later that H extends to a bounded linear operator from LP to itself
for 1 < p < co. Before going into that, let’s fix some notations and recall the basic
facts about convolutions and the Fourier transform on R".

Below Cy(R"™) will denote the space of continuous functions that vanish at infinity.
B(R™) will denote the space of finite Radon measures on R", which is the dual space
of Cy(R™). Recall that the norm on B(R"™) is given by

lull = / dlu
]Rn
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Moreover, by considering the correspondence

[ fdu

we can identify the space L!(R") with the subspace of B(R™) consisting of measures
absolutely continuous w.r.t the Lebesgue measure. This is a proper subspace since
the Dirac J-measure is not absolutely continuous.

As is the case of L' functions, we can convolve measures in B with one another.
Specfically, we make the following definition.

Definition 4.2. Given two measure p; and o in B, their convolution p = uq * o
is given by

w0 = [ st wdm(@di). vr € R

Remark 4.3.
(1) By changing the order of integration and switching = and y, we see that

M1k 2 = H2 * 4.
(2) We have the following inequality which guarantees that py * ps is again in
B:

lpan # o] < [l [[[] e

Definition 4.4. Given a f € L(R") and u € B(R™), define their Fourier transform
to be

FUNE = f() = [ e fla)da

Fu) = [ e duta)
R?’L
We summarize the important properties of F as the following proposition:

Proposition 4.5.

(1) Let f € LY(R™), then F(f) is in Co(R™). Moreover, given another function
g € LY(R™), we have

(f*9) = f3.
In other words, F takes convolutions into usual products in the phase space.
(2) (The Plancherel identity) Let f € L' N L?(R™), then

1Fllz2 = 1I£ 1l 2

Thus, by continuity, F extends to an isometry from L*(R™) to itself.
(3) (Estension of the convolution property) Let f € L*(R"™) and g € L'(R™).
Define h = fxg. Then
h=fg
Next we look at convolution operators and state some important facts about
them.
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Fact 4.6. (Convolution commutes with translation) Fix y € R"™ and define the
operator T, by T, f(z) = f(xz+y). Moreover, take n € B(R™) and define an operator
T : LYR") — LY(R") by

Tf=fxp
Then we have

T, =TTy

Fact 4.7. (Characterization of bounded linear maps on L' that commute with trans-
lations) Let T be a bounded linear map from L'(R™) to itself that commutes with
any translation. Then there exists a measure p € B(R™) such that

Tf=f*p, Vf€L'(RM.
Moreover, the operator norm of T is equal to |-

Fact 4.8. (Characterization of bounded linear maps on L? that commute with trans-
lations) Let T be a bounded linear map from L2*(R™) to itself that commutes with
any translation. Then there exists a function m € L (R™) such that

TF(€) =m(€)f(€), Vf € LA(R™).

Moreover, ||T|| = ||m||gee-
Remark 4.9. The function m in the last fact is called a multiplier.

Now we make our first step towards understanding operators defined by singular
integrals.

Theorem 4.10. Let K € L*(R") and suppose
(1) [[K[l= < B
(2) K € CY(R™ - {0}) and |DK (z)| < C|z|™" 1
For f € L' N LP(R™), define Tf = K * f. Then for all 1 < p < oo, there is a
constant A = A(p, B,n,C) such that
1T fllze < All fllze, Vf € LP(R™)

Remark 4.11.

(1) The constant A does not depend on the L?-norm of the kernel K.
(2) The Hilbert transform is not covered by this theorem since the kernel, 1/y,
fails the first condition.

Proof of theorem 4.10. The idea is to apply the Marcinkiewicz interpolation theo-
rem followed by a duality argument. Accordingly, the proof will be carried out in
three steps.
Step 1 (T is weak (2,2))

This step is easy. Since Hf( L= < B and T} — K f, by Plancherel identity we
have - R

ITfll2 = 1Tf |2 < Bllfll2 = Bl fllz2, Vf € L' 0 L*(R™)

Hence, by continuity, T extends to L? and is strong (2,2). Thus 7 is weak (2,2).

Step 2 (T is weak (1,1))
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This step is where most of the work goes. We want to establish an estimate of
the form:

m{[Tf] > a}) < —[|fllp, Ve
Note that this would be easy if we know that || f|lcc < «, for then we deduce that

113 = [ 1Pde < all 7l

Using the result of step 1, we can proceed as follows to get the desired estimate.

*lQ

1 , _B* o B?
m({|ITf| > a}) < STz < 5172 < Il

This suggests applying the Calderon-Zygmund decomposition to f at the level a.
Then we get:

() R*"=FUQ FNQ=10
(2) |f(2)] < @ on F, and

1
m(Q;)
(3) There is a constant C' such that
c1 dist(Q;, F') < diam(Q;) < Cdist(Q;, F) for each Q;.

a <

/ flde < 2", (@ = Q)

Qj

Furthermore, we also get a decomposition f(x) = g(z) + b(z), where

(1)

[ flx) on F br) — 0 on F
g($)_{n~@fijdx onQj (x)_{f(””)_n@fczjfd“" on @

(2) llgllze < 2", fQj bdz = 0 on each Q.
As in the proof of Theorem 3.4, we have
m({|Tf] > a}) <m({|Tg| > o/2}) + m({[Tb| > a/2})
To estimate the first term, we note that
lgllZ2 < llgllze=llgllz < 2"allg] L

Thus, using step 1,

B2 9 2n+2B2 2n+2B2
m({|Tg| > a/2}) < WHQHLQ < ———lgller = ———Ilfllz-

As for the second term, since
1
m(Q) = m(Q;) < e,
J

it suffices to estimate m({|Th| > «/2} N F).
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Fix a j, let b; = b]Qj and suppose that @); is centered at y;. Then because b
integrates to zero on Qj, we have

Thj(x) = ; K(z—y)b(y)dy = / (K (z—y)— K (z—y;)]b(y)dy < / |
i i i
where we’ve used the mean value theorem in the last inequality.
Next recall that the cubes @), satisfies

O~ dist(Qj, F) < diam(Q;) < Cdist(Q;, F) for each Q;.

C diam(Q);)
Ww(y)\dy,

= |z -yl =l —yjl =z -y vy cQ;

Therefore
C diam(Q;) diam(Q);)
S by < 0 )y
/j @ — [ o =y o, J
diam(Q;)
< CWW(QJ‘)C@
< Co dist(y, F')
- Q; |$ _y‘n—‘rl
and hence ( )
dist(y, F'
T = T < _—
[Tb(x)| = |Z bi(@)| < Ca | T

Integrating over F', we obtam

dist(y, F'
[ <ca [ [ B0,

SC’a/dist(y,F)/ |z —y| " Ldxdy
Q F

< Ca/ dist(y,F)/ wpr " drdy
Q r>dist(y,F)

< Ca/ dist(y, F) (dist(y, F)) "' dy
Q
< Cam(Q) < CfllLs
Therefore,

m({|Tb| > a/2}) < m(Q) +m({|Th| > a/2} N F)

C C
<m(Q) + —|fllzr < —[fll
6] [0

and we’ve shown that 7" is weak (1,1).
Step 3 (Interpolation and duality argument)

Having verified its assumptions, we can apply the Marcinkiewicz interpolation
theorem to deduce that

ITfllze < Apll fllze, (1 <p<2).
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For 2 < p < o0, let ¢ be the dual exponent and recall that

ITfl = sup / oT fdu

peL, [lpllLa=1

Given a ¢ € L9 with |||« = 1, we have

' / p(@)T f(x)de| = / { / D@ K (- 9) () dy] -

-| [ | x - wetaris] f(y)dy]

|/ f(y)Tgo(y)dy’ < Il |l

where T is the convolution operator with kernel K (z) = K(—z).
It’s easy to see that K satisfies all the assumptions of Theorem 4.10 with the
same constants B and C'. Since 1 < ¢ < 2, by the above arguments,

ITellze < Agllellze = A,

so we have
‘/w(w)Tf(fc)d:v S Allflize, Yo € LY, pllze =1

Hence for 2 < p < oo,

ITFllee < Agllfllze

Recalling that we’ve covered the case p = 2 in step 1, the proof of the theorem is
complete. O

The condition on the decay of |[DK| can actually be weakened, as the following
corollary shows.

Corollary 4.12. The conclusion of Theorem 4.10 remains true if we replace
(2) [DK ()] < Cla] "1

by the following condition
(2°) There is a constant B’ such that

[ K@y - K@y < B Vgl >0
|z|>2]y|
Remark 4.13. (2) implies (2') by the mean value theorem, so (2') is indeed a weaker

condition.

Proof of Corollary 4.12.
It suffices to prove the estimate

m({[Tb] > «/2}) < —|[fl[s

under the present assumptions. Again we apply the Calderon-Zygmund decompo-
sition to f at the level a to get

elQ
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(1) R*=FUQ, Q=U;Q;, Q; centered at y;
(2) a < #QJ) fQJ- f(z)dr < 2"«
(3) f=g+0
For each cube @), consider the cube Q7 centered at y; with

diam(Q7) = 2n'/2 diam(Q;)
Then it’s not hard to see that for all = ¢ Q;‘f,
|z —y;| = 2ly — 5], Yy € Q.
Now let Q" = U;@Q7 and F* = R™ — O, then we have
* 1/2\n c
m() < (2n°77)" m(Q) < — [ fllzs-
Thus, in order to get the desired estimate, it suffices to bound
m({|Tb| > a/2} N F™).

Following the proof of Theorem 4.10, we can write
/ Tb(a)|dr = / 3 / K(z —y) — K(z - y;)|b(y)|dydz
-y / b [ K@ —y) — Ko —y;)|dedy
j Qi E

<> [ o) K (¢ — ) — K(x — y;)ldady

[z —y;|>2|y—y;l

-y / bw)| K(z+y; —y) — K(x)|dedy
j j 2|22y —y;|
Applying condition (2), we arrive at
/F Th(a)ldz < S /Q b(y)|CBdy < C||f |1
j J

= m{|Th > a/2}) <

2lQ

[Faivas

Next we prove another result on singular integral operators.

Theorem 4.14. Suppose the kernel K satisfies:
(1) |K(@)| < Bla| ™"
(2) Jiomopy K (@ —y) — K(z)|de < B, Vy
(3) fR1<|x|<R2 K(z)dr =0, V0 < Ry < Ry <00

13
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Given ¢ > 0, we define
5= [t pKdy
ly|>e

Then for all 1 < p < oo, there is a constant A,, independent of €, such that
ITefllze < Apllfllze, Ve
Moreover, for each f € LP, the limit
Tf=lm1T.f
e—0
exists in the strong LP sense and satisifies
ITfllze < Apll fllze

The following lemma will be important for the proof of Theorem 4.14.

Lemma 4.15. Let K be as in the theorem and define

_ | K@) , |z >
KE(””)—{ 0 el ze

Then there exists a constant C, independent of €, such that

sup|K.| < C
Rﬂ,

Proof. We first prove the case ¢ = 1. It’s obvious from the definition that K satisfies
conditions (1) and (3) in Theorem 4.14. We’'ll show that (2) holds for K; as well.
This comes down to handling the following two integrals:

Case 1

2
/ | K (z)|dz < / Br~"r"ldr < CB
|z[>2[yl, x| >1,]e—y|<1 1

Notice that we’ve used condition (1) and the fact that
| =2yl lz —y| < 1= |z <2
Case 2

3/2
/ |K(x —y)|dz < / Br"r"Ldr
2| >2Jyl, 21 <1 Je—y] >1 1

This time we use
] =2 2ly[, 2| <1= [z —y| <3/2

Therefore K satisfies condition (2) as well. Now take an arbitrary y € R™, then
we have

Kl(y) = lim eQﬂm’.yKl(iE)dl‘
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= (/ + lim ) MY K () dx
1<]z|<1/ly] B0 J1/|y|<|z|<R

=L+1D

Using condition (3) (K integrates to zero on annuli centered at 0), we write

/ [e2m‘x~y _ 1] Ki(z)dz
1<]z|<1/]yl

</ Clyll|Ble|"dx
1<]z]<1/]y|

|| <

<CB
To estimate I, we first notice that by letting z = %#, we have e2™2¥ — _1 and
SO we can write
; 1 ) )
Kl (x)e%”y'xdx — Kl (x)e%’y’x - Kl (x)e2my~(z+x)dm
1

- / K@) - Ko — 2)] v

Since the integral I is not over the whole space, we will pick up extra terms when
applying the above trick to it. Specifically, we have

1 .
I, = = lim [K1(z) — Ki(z — 2)] €2 Ydx
2 R—co Ji/|y|<|e|<R
1 . 1 .
_ / Kl (:L“)e2mz'ydl“ + / Kl (x)eQmm'ydx
2 J1/ly|< |zl el <1/ly] 2 J1/lyl<al Ja—21<1/ly|

1

3] We apply condition (2) to get a bound on the first term

Since |z| =

<B

/ (K1 (z) — Ki(z — 2)] €2 Ydx
1/|y|<lx|

For the second term, note that
1 1 1 1
o < o lp—2] > == e <a <
[y lyl 2[yl [yl
Therefore

K (z)e*™ Yy S/ B|z|™"dxz < CBlog?2
1/2ly|<|z|<1/ly|

/1/y|<|362|7|33<1/|y

Similarly

Ky ()™ Yy S/ B|z|™"dx < CBlog(3/2)
1/lyl<|z[<3/2]y]

/1/|y<|x,|€62|<1/y|

Adding up, we then get
|Is| < CB
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and hence
|[Ki(y)| < [Li| + |12 < CB
Now we show why we may reduce to the case where ¢ = 1. For general ¢ > 0 take

K'(z) = €"K (ex). Notice that this function has the same properties as K. Then we
have that K.(x) = e "K]|(ex) and hence that

K (@)[(€) = le K} (e1a)[(€) = K] |(e€).

Since, by our work above, the right hand side is bounded, then the left hand side
must be bounded. (Il

We'll now apply Lemma to prove Theorem |4.14]

Proof. We know that T, is weak (1,1) map by the results of Lemma and by
Corollary m Moreover, we know that the map is bounded on L? since I/(\e is
bounded and since T is simply convolution with K.. Hence, by interpolation we
have that T, is bounded as a map on LP for all 1 < p < 2. Moreover, since T is
self-adjoint, we may use duality as in the proof of Theorem to get that T, is
bounded as a map on 2 < p < 0.

It remains to check that the 7T, has a limit in L? as € tends to zero. We’ll show
this first for f € C!(c0). Then we compute

T = [ Ky
y|ze
=/’ KW) [y —2)— f@ldy+ [ K@)y —o)dy.
1>|y|>e ly|>1
=] =11

Notice that we use the property that K has mean zero over annuli. Term I7 is
clearly independent of € so we need not worry about it. Hence let’s check that the
first term has a limit. Since f is compactly support and is C!, then it is Lipschitz.
Let Cy be the Lipschitz constant of f and we have

[ K0 @l [
1>]y|>e

1
K)lldy < CsB [ dy.
1>y|>e e |yl
This last term is bounded independently of € (which can easily be seen by changing
to polar coordinates). It is also easy to alter this argument to show that T.f is
Cauchy is in the L> norm. Since term I in T¢f has compact support (it inherits
this property from f), it is then easy to see that T, f is Cauchy in LP. Hence T f
tends to an element that we call T f as € tends to zero.

So now you might believe that it is obvious that T, f is Cauchy in LP for any f.
In which case, skip this paragraph; otherwise we’ll show it here to be complete. Fix
§ > 0 and assume that g € LP and find f € C}(R") such ||f — g||, < 6. Then choose

€o small enough such that e, ez < € then |T¢, g — Te, 9|, < 0. Then we have
1Te, f = T, fIl < MTer f = Teoygll + 1 Tes f = Teagll + 1 Terg — Teagll < Apd + Apd + 6.
Hence T, f is Cauchy. O
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A direct application of this is to the Hilbert transform. There our kernel is
K(z) = 2, and so Theorem tells us that the Hilbert transform is well-defined

Tz’

and bounded on LP for any 1 < p < oo.

Singular Integrals that commute with dilation. Define 7. f(z) = f(ex). Then we look
at operators 1" such that 7.77.-1 = T. In the case that T is given by convolution
with a kernel, K, then this is the same as the condition

K(ex) = ;nK(:L*)

In other words, when K is homogeneous of order n, or, K can be given by

- ()

where Q : S"~! — R. We will abuse notation and write Q(z) for any x by simply
scaling x to be a unit vector.

Theorem 4.16. Define

w(d) = sup Q) - Qy)l
lz—y|<9,
z,yesSn—1

Suppose that

(1) Q is bounded on S™ 1,
(2) [gn-1 Q(z)dz =0, and
(3) (Dini-type condition)

1
/ @d5<oo.
0o O

Define

7.4 = [ Q) pp yyay,

y|>e ‘y|n

and we have that |Tcfll, < Apl|fllp holds for all f and all €. Moreover, we may

define T f = lim, T, f, where the limit is in LP. Moreover, for f € L? we may write

Tf(€) = m(©)f(©),
where m is homogeneous of degree zero and is, in fact, given by

T

@y m@= [ [2sign<m.y>—1og|w~y\ Q)dS(y), for€e s
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Proof. Our condition on the integral of 2 gives us that the kernel has mean zero
over any annulus. Moreover, we may bound

Qz—-y) Q=)
Kz—-—y) — K(x)|de = - dx
/|m|22|y| = y) = Kl /|wzz|y| [z —y[* 2
Qz —y) — Q) 1 1
= /|xzz|y| |z — gy dH/ ‘Q(@ [Iw\" o — yl"} &
::‘%1 =Th

We'll first consider T5. Here we may use the mean value theorem to get

T < /
|z|>2[y]
n
’S/ n—&‘—g{’ n—1 dl‘
/=2l 12"yl
00 n—1
5/’|mr < o
2y rn+l
Here we simply used that all norms on R™ are equivalent, the triangle inequality,

and that |z — y| > |z| — |y| > |z| — |z|/2. Now we will consider T}, making use of
the Dini-type condition. We estimate

n __ )
o = e —yl"|

[z =yl

Toy oz
lz—yl |

T1§/ w< I>dx
2| >2]y] z —y["
</ w<4|ym|>dx

~

Here < (resp. ~) means less than or equal to (resp. equal to) up to a constant
depending only on the dimension.

Hence, our conditions on 2 and the kernel, give us that the hypotheses of Corollary
are satisfies. Hence we know that T is well-defined. It remains only to show
that the Fourier multiplier m exists and is given by the claimed formula. By Fact
we know that there exists a Fourier multiplier, m € L*. In order to show that
m is homogeneous of degree zero, we will use a trick with the dilation operators to
show that m is invariant under dilation.
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To this end we look at the Fourier transform of 1" conjugated by 7. and compute
F(rl 11 f)(€) = e "F(Tr—1 f)(e'€)
= "m(e ) F(r1 f)(e'€)
= m(e &) F(f)(©).
On the other hand, since T' commutes with dilation, we know that
F(1T1e-1 f) (&) = F(TF)(E) = mE)Ff(§)-

Hence it follows that m(e~1¢) = m(€), so that m is homogeneous.
Now we check that m has the form which we claimed. To this end we look at the
operator T, defined as

o,
T;nf<m>-—-]{§zA§n @ = .

Call K., the kernel of this operator. We will show that K, ¢,n is bounded independent
of € and n and that its limit is given by the formula in . We will show this
limit point wise, but one can check that the limit converges uniformly when z’ - 3/
is bounded away from zero. Hence it follows that Xem converges to m. To that end
we rewrite the kernel as

~ n ) d
Kep(z) = /Sn—l/ exp{2miRra’ - y’}Q(y’)TrdS(y’)

(4.2) = /Sn—1 /77 lexp{2miRra’ - y'} — cos(2mRr)] Q(y’)@dS(y’)

r
= [ Ll 120180,
Here we have defined
U
Iy, y) = / [exp{2miRr(z - y)} — cos(2mRr)] @,
. r

where we write + = Rz’ and y = ra2’ with || = R and |y| = r. We compute the
limit of the imaginary part of this first

im(I.,) = / sin(@rRr(a -y S ( /0 * sin®) dt> sign(a’ - o).

T t

It is not difficult to show that the integral from e to 1 is bounded independent of €
and 7. Using some complex analysis we may evaluate the integral here to obtain

im(Ze ) — gsign(x' ).
On the other hand, the real part of this is given by

r 2R
Re(l,y) = [ [cos(2ettr(a’ /) — cos(zarr)] T = [ feos(ta’ -1/) — costt)] -
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As with above, it is not difficult to show that this integral is bounded independent
of e and 1. Then we apply Lemma to get that

Re(I,) — —log |z’ - |
Putting this together with (4.2]), we obtain

K’em — [Z;T sign(z’ - y') + log Q>y)dS(y).

1
gn—1 EET
Since IA(W converges as we take € to zero and 7 to infinite, then IA(E,W converges to
m, which implies that m is given by the formula in (4.1). O

Below, for completeness, we include a lemma which Yi alluded to but did not
include in the lecture.

Lemma 4.17. Suppose that h is C', even, mean zero, and periodic with period T .
Suppose that 0 < |u| < 1. Then

. n dr
tim [ [h(r) — h(r)] 2 = ~h(0) log]l.
2 r

Proof. We’ll assume that p > 0 without loss of generality. First we compute that

[ ) = % = [ M [T 2y
(— @dr
6 /M ;

L
/ﬂ 6 dr — h(0) log(y) - |

I

S o

D‘

T‘

Lhgr/n),,

r

€

S 0— h()log() 0.

The first term tends to zero since h is Lipschitz and the last term tends to zero
because h is mean zero. O

5. VECTOR VALUED ANALOGUE

Take H a separable Hilbert space, and a map f : R®™ — #H. Define |f(x)| and
| fl| L»(mny as usual using the Hilbert space norm. We denote by B(H1, Hz2) the space
of bounded linear maps Hi1 — Ho.

If K € LYR",B(H1,Hz2)) and f € LP(R",H;) for p, q conjugate, then

- / Kz — ) (y)dy

Theorem 5.1. All previous results concerning singular integrals are still valid in
the general setting f : R — Hi, K : R" — B(H1,H2). Here T.f and Tf take
values in Hs.

converges in Hs a.e. x.
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Recall the Hilbert transform: given f: R — R,
1 _

Hf(z) =lim — Mdy
O Jlyze Y

having multiplier function

=sign(() = zi

The form of m immediately implies H? = —1.

Proposition 5.2. Suppose T is a linear transformation, bounded in L*(R), and
satisfying:

(a) T commutes with translations,

(b) T commutes with positive dilations,

(¢) T anti-commutes with reflections.

Then T is a constant multiple of the Hilbert transform.
Proof. Since T is bounded, linear, and satisfies (a), we have by fact
FT =mF

for some multiplier function m.
Properties (b) and (c) show that m(dx) = sign(d)m(x), as follows:

Tsm = 15 FTF
=8| ' Frs TF!
= 6| sign(8) FTrs 1 F 1
= sign(§) FTF !
And hence m = C'sign. O
Definition 5.3. Given f : R™ — R, the Riesz transform Rf is defined by

1 Y
Rf(z) = — — lim/ gt (@ —y)dy
T BY T 0 Sy e [yl
Lemma 5.4. Letm : R™ — R” be homogenous of degree 0, and suppose m commutes
with rotations. Then

for some constant C'.

Proof. For any x # 0, we have for an appropriate rotation matrix p

m(x) = |x1|m(pel) = |;|pm(61),

where e is the first unit coordinate vector. It suffices to show m(e;) = Ce;. But
follows because every rotation p fixing e; necessarily fixes m(ey), and (up to scaling)
e1 is the only vector fixed by all such matrices. ([l
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Proposition 5.5. Let T = (T1,...,T,) be a vector of bounded linear transforma-
tions on L*R™. Suppose each T; commutes with translation and positive dilation,
and hence by fact[{.§ we have functions m; homogenous of degree 0 such that

FIy = myF
Then if m = (mq, ..., my) commutes with rotation, T is a constant multiple of R.

Proof. By lemma H we know m(¢) = C ‘a It suffices to show the multiplier of R

also commutes rotation.
Clearly R satisfies the conditions of theorem [£.16, with Q = Idgn-1. Therefore
the multiplier m® of R is given by the formula

6.1 o) = [ (5 st )~ osle o))

and hence m® commutes with rotation. In fact, evaluating (5.1)) at a point gives
mh(Q) = i O
Application 5.6 (LP estimate for elliptic operators). Suppose Au = f for f € C}(
R™). Then ||u||yy2pgn < C||fl|rr for 1 < p < oco.

Proof. Tt suffices to show

82
H < Cllfllr

813ial'j
Using that m(¢) = |¢|? is the multiplier of A, we have
F(0i05u)(C) = —4m*Gi¢; Fu(()

ZC’L /ng 2;

= —F(RiR;Au)(C)
= —F(RiR; f)(C)
The result follows from the L? bound of theorem O

Lp

_42

Application 5.7. If f € C}(R?), then

Proof. Follows directly from the relation
af of

of b of .of
or; —Hi(F ZR2)(83:1 T 81‘2)

and the LP bounds of theorem [A.16] O

Of

<A —_—
‘6x1+ 81‘2

81‘1 H 6952

forl <p< o
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6. POISSON INTEGRAL
Given f(z) € L*(R"), we want to find u(z,y), = € R", y € R, such that
{ARTlu(x, y) =0,
u(z,0) = f(x).

Denoting by 4(t,y) the partial Fourier transform of w in x, we obtain u(t,y) =
f(t)e=?mItv and thus

(6.1)

(62) u($7 y) — f(t)€*2ﬂ"t|y672ﬂ'ix-t dt
RTL

That wu satisfies the Poisson equation Au = 0 follows from

ART'I (6—27r|t\ye—27rm-t) =0,

where ARTA = 53—;2 + 30 68723 Moreover, u(z,0) = f(x) holds for some classes
of f. As a simple example, suppose f € L%(R"), then u(z,y) — f(x) as y — 0 in
L?(R™)-norm; indeed, by Plancherel,

lue, y) = @)z = llatty) = FOllz2 = 10> = 1) 2 2= 0

by the Dominated Convergence Theorem, since |e*2”|t|y — 1] <2 for y > 0, and we
have pointwise convergence e 2™ — 0 as y — 0. This holds more generally:

Theorem 6.1. In (6.1), suppose that f € LP(R™), 1 < p < oo. Then for the
solution (6.2)) of (6.1)), we have u(x,y) — f(x) in LP(R™)-norm.

We will deduce this from the following lemma:

Lemma 6.2. Let ¢ € LY(R"). Set ¢(x) = SUP|y|>(«| |[9(¥)|, and suppose A :=
[9Y(z)dx < co. Moreover, let ¢c(x) = e (e 'z). Let f € LP(R"), 1 < p < oo.
Then:

(1) supesg |f * ¢e|(z) < AM f(x), where M f is the mazimal function of f.

(2) If [gn ¢(x)dx =1, then limeo(f * ¢c)(x) = f(x) a.e. x.

(3) If Jgn ¢(x)dx =1, then || f * ¢e — fllr — 0 as e — 0.

Proof. We only prove the last part. One very easy way to proceed is to first show the
stated convergence for continuous, compactly supported f and then use a density
argument. Alternatively, observe that

1 * b — fllow = / (e =) = S@)outdy| < / 1£( = ) — Fllzeloe(w)] dy.

Now, given 6 > 0, we will show that we can choose r > 0 such that for |y| < r,
lf(- —y) — fllzr < d. But then

||f*¢6_f||LP§/ ||f(-—y)—fIILplcbe(y)\der/ 1f(- =) — flleeloe(y)] dy

ly|<r ly|>r

< 6|l e +2Hf||LP/ [¢(y)dy < (1 +|ollL1)

ly|>re—1
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for sufficiently small € > 0. Since § > 0 was arbitrary, this proves the lemma.

To finish the proof, we show that for f € LP(R"), 1 < p < oo, we have A(y) :=
lf(- +y) — fllz» — 0 as y — 0. This is clearly true for continuous, compactly
supported f. For general f € LP(R™), decompose f = f1+ f2, where f is continuous
with compact support, fo € LP(R™), and || fa]|zr < §; then

Ay) < A1 +y) = fillze + 26
but the first summand on the right converges to 0 as y — 0, and we are done. [

Remark 6.3. The last part of the lemma is false for p = oco: Indeed, taking f to
be the characteristic function of an interval and ¢ with compact support, it is easy
to see that || f * ¢ — f||r = 1/2 for all sufficiently small € > 0.
On the other hand, part (2) is true for p = oo. Indeed, it suffices to show that if
f € L*>®(R"), then
W (f « ¢c)(x) = f(x)

e—0

a.e. x € B, for every fixed compact ball B. To see this, let By D B be a strictly
bigger ball, and write f = fi + fo with

fiw) = {g(‘”’ y o

Then f; € LP(R™) for all 1 < p < o0, so the statement holds for fi. For fa, we have

(fo % d)(z) = / fow)be(z — y) dy,

and in the support of the integrand, y € By, thus for x € B, we have |[x —y| > § =
dist(B, By); so for x € B,

e—0
(fo * 60)(@)] < | fall e / be(z — )l dy < | fall e / 6e(y)] dy =5 0.
By ly|>é
We can now prove Theorem

Proof of Theorem[6.1 By (6.2), we have u(z,y) = (P, * f)(x), where j—’;(t) =
e 27tV Computing the inverse Fourier transform gives

()

p(nt1)/2°

(z) = s Cn =

PO = e
Notice that P, is homogeneous of degree —n with respect y, that is, Py(x) =
y~"Py(y~'x). Moreover, Pi(x) is positive, decreasing in |z|, in LP for 1 < p < oo,
and [p, Py(z)dx = P,(0) = 1. Therefore, we can apply Lemma with ¢ = ¢ =
P ]
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7. SPHERICAL HARMONICS

Definition 7.1. Let Py be the linear space of homogeneous polynomials of degree k
with complex coefficients in R™. Let H be the subspace of harmonic homogeneous
degree k polynomials with complex coefficients.

We have natural orthogonality properties between H; and Hj, for j # k: Indeed,
if P(x) € H;,Q(x) € Hy, then
. ——0P Q
(- k)/ P(z)Q(x) do(z) = Q(z) 5~ (z) = P(z) 5~ (2) do(z)
Sn—1 n on

Sn—1

_ / (QAP — PAQ) dx = 0,
j2|<1

thus

/S  P@)Q) dox) = 0.

Lemma 7.2. Every P € Py can be uniquely written as P = P + |z|?> P, where
P e Hy and Py € Pr_s.
Proof. Write P(x) = E\Oé|=k’ aqnx®, where a = (aq,...,qy) is a multiindex, z® =
[Tz}, la| =3 aj. Define
0 a\“
o (i e
<8x> 2 <8x> |
la|=k
gye_ 08 oe
) ) ;

7. a1 "t ay .
$11 8xnn

Define an inner product on Py by

rQ-r(5)e

To see that this is indeed an inner product, notice that if P and () are different
monomials, then (P, Q) = (Q, P) = 0 in view of ((9%)& 2? =0 if a # f3, and thus

(P,P)= )" |asa!,
|a|=k

where a! = [Ja;!. We now claim that |z|*P,_s is the orthogonal complement of
‘Hj, with respect to this inner product, which would finish the proof. To show the
inclusion Hy, € (|2|?Pr_2)*, observe that for all Q € Hj, P € Pr_o, we have

([2"P, Q) = (P, AQ) = 0.
For the converse inclusion, suppose P; € (|z|?Pr_2)", then
([2*Py, Pr) =0 ¥P3 € Ppa,

so (P, APy) =0 for all P, € Px_5. Choosing P, = AP gives (AP, AP;) =0, and
since (-, -) is an inner product, AP; = 0, as was to be shown. O
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Iterating this, we can decompose any polynomial P € P as a finite sum P =
Py + |22Py + |z|*Ps + - -+ with Pj € Hy_o(j_1); restricting to St this gives
P=P +P,+PFPs+---.

Definition 7.3. Define H; to be the linear space of restrictions of function in Hy
to S*1.

Relative to the standard inner product on L?(S"~!), we have H; L Hy, for j # k.
Moreover, > r o Hy is dense in L?(S"!); indeed, polynomials in R™ are dense in
C(B;) by Stone-Weierstrafl, thus the space of restrictions of polynomials to S*~1
is dense in C(S"~!), which in turn is dense in L?(S™~!); but every polynomial is
the sum of homogeneous polynomials, which, whose restrictions to S*~! are in turn
sums of restrictions of harmonic polynomials to S*~!. In summary:

Theorem 7.4. The inclusions Hj, — L*(S"™1), k=0,1,2,..., induce an isometric
isomorphism L*(S"™1) = @7, Hy.

Thus, for all f € L?(S"!), we can find {Y;}?2, such that

oo 0o
F=2 Ye=D ay,
k=0 k=0

with convergence in L2(S"~1), where Y3, Y € Hy, HYkOHLQ(Sn—l) =1, and

TP / Yi2do =S Jaxf?
k=075""" k=0

Also note that since H consists of constant functions, fSnfl Yido =0 for k # 0 by
the orthogonality of Hy and Hy; thus

_ 1
a VOI(Sn_l) S§n—1

The Y, and Yk? are eigenfunctions of Agn-1; more precisely:

Proposition 7.5. If Y} € Hy, then Agn1Yy = —k(k +n — 2)Yj.

Yo f(x)do(x).

Proof. Since

9 n—10 1

R

we see that Agn—1Y}, equals the restriction to S*~! of Ag» acting on the homogeneous

degree 0 extension of Y}, which is equal to |z| %Py (z) for some P, € Hj. Therefore,
0

_ _ ~ 0,
Agn-1Y), = (Apn Py)|z| ™% + Pu(Apn|2| k)”ZT(W k)TPk(x).
j=1 :U] x]

Apgn

The first summand vanishes since P is harmonic on R"; for the second summand,
we compute

Apnlz| ™ = (k(k+1) — (n — Dk)|z — 2| ™% = k(k — n+ 2)|z| %72,
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and for the third summand, we compute %m_k = —kx;|z|7%2 and
J

= 0

E wjaipk(l') = k’Pk(.%')
— Zj
7j=1

by homogeneity. Thus, at |z| = 1, using Pg|gn-1 = Y,
Agn-1Yy = (k(k —n +2) — 2k*)Y, = —k(k 4+ n — 2)Y}. O

The expansion of f = >"22,ar Y, Y]z = 1, as above, into spherical harmonics
is very similar to the Fourier decomposition of functions on the circle. As an example,
we have:

Lemma 7.6. The function f =Y ;2 akY,? is C*° if and only if for all N, there
exists a constant Cy, such that |ay| < Cxk=N.

Proof. If f € C'°°, then for all r € N, we can integrate by parts to obtain

/(ATf)YkO do = ap(—k(k+n—2))".

But by Cauchy-Schwarz, the left hand side is uniformly bounded in k, hence a; =
O(k~?7) for all » € N. Conversely, a = O(k~) for all N implies A" f € L? for all
r € N. By elliptic regularity, this implies f € C*°. O

Next, we use spherical harmonics to generalize the Riesz transform.
Lemma 7.7. Let P, € Hj,. Then
F (Py(z)e ™) = iF Py (z)e P,

Proof. For fixed t € R", we have

oo
/ e—ﬂ\l’lzpk(w +t)de = / pn—le=mr? Py(t + rw) dwdr.
n 0 S§n—1

Since Py is harmonic, the inner integral equals wy,_1 P(t), where w,_1 is the area of
S™1, hence

/ e Py (3 + 1) dz = Py(t) / e 4y = Py(1).
Both sides of this equation are entire in ¢, hence for y € R",
/ e~ Py (2 — iy) dx = P(—iy) = (—i)" Pi(y).

Changing variables to x — ¢y in the integral and using Cauchy’s Theorem to shift
the contour of integration back to R™ again gives

(—i)*Pr(y) = / e el =2miey by () da,
which upon multiplication by e~mv* and changing the integration variable to —x,
thereby picking up an additional factor of (—1)* from the homogeneity of P, proves
the result. 0
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Corollary 7.8. Fiz a nonzero P, € Hy. For radial functions f(xz) = f(|z])
with Py(x)f(r) € L3*(R™), the Fourier transform of Py(x)f(r) is also of the form
Py(x)g(r) with g radial, and the map F, ), defined by F, 1(f) = g essentially only
depends on n + 2k (but not on Py ), more precisely,

yn,k = ikﬁn—l—ﬂc,o'
Proof. By the lemma, we know that if f = e~lel?
if f(r) =e ™" with § > 0, we compute

F(Pla)e ™) = 5T (5 2)e ™) = 52 2 (P (e (£

— 5 K/25n/2kp, (%) o /8 _ 57k57n/2ikpk(m)efm2/57

, then the statement is true. Next,

thus

ymk(e—vr&?ﬂ) _ ikd—k—n/Qe—wr2/5’
which implies

Frpi(e™) = iF Fp g0 (€™,

This implies the lemma for all f which are in the closure of the span of {e‘”‘s’“2 }s>0
in the Hilbert space

22((0.00). 12 dr) = { 0 ] [T 1Rt <o

which is precisely the space of all radial functions f for which Py (z)f(r) € L?(R").
But it is in fact easy to see that the span of {e~™" }455¢ is dense in L2((0, 00), r2F+7=1dr):
Indeed, if f € L?((0,00),r2**"~1dr) is such that

/ Flr)e ™ kA=l g — 0 W5 > 0,

0

then a change of variables shows that the Laplace transform of f (\/17)7“(2’””_2)/ 2e

LY((0,00),dr) is 0, thus f = 0. O
We now generalize the Riesz transform:

Theorem 7.9. Let P, € Hi(R™), k > 1. Then the multiplier of the kernel
|z| ="~k Py, (x) (in the sense of taking the principal value) is yg|x| =% Py, where

Fr ()
Y= T Ty
(%)
We will use an approximation argument.

Lemma 7.10. For 0 < a <n, k>0, we have

(7.1) z (Pk(”f)> . Py (x)

|z|n R ko |z|Fra”

i the sense that

Pp(z) - _ Py(z)
/]Rn WQS(:E) dr =Yg o /]R" ]:1:\’““"‘ ¢(z) dz
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for ¢ € C°(R™). Here
Frofroor (i)
ko = k+n—a
T (+572)

Proof. Since .F (Py(x)e~™e1*) = jkg=k=n/2¢=mlz*/6 p (1) we have

/ Pk(:n)e_mslm'zg?)(x) d:nzik5_k_”/2/ Pk(:p)e_”mz/agé(x) dx.

n

If we multiply both sides by §(*+7=®)/2=1 and integrate with respect to ¢ from 0 to
oo, the left hand side becomes

A~

Py(r)p(x) k+n—a\ _(in_a)p
Z R\ R Y n—o
|x’k+n—a dx 5 s ,

where we uesd [;° e~™2*§6-1 g5 = (r|x|?)~PT(B), and the right hand side becomes
T (’”2‘1) o (k+a)/2 / De(@)lx) 0

|x’k+o¢

Proof of Theorem[7.9. We want to take @ — 0 in the previous Lemma. For ¢ €
C°(R™), we can take the limit @« — 0 in the right hand side of (7.1)) directly,

obtaining
: Py () / Py ()
lim dr = dz.
a0 R \ac]’““‘qb(x) v g |z|F d(w) d

For the left hand side, we split the integral, writing
Pp(z) - Pyp(z) - Py(z) -
—¢(x)dr = / —¢(x) dr —I—/ —¢(x) dx.
fo et ej<t [2HEa ot [2HE2

In the second integral, we can take the limit v — 0+ directly. To deal with the first
term, we use the cancellation property

P
[
r<|z|<R |z|

for all 0 < r < R, which follows from the fact that the integral of P, over any
coordinate sphere vanishes in view of k > 1, to rewrite the first integral as

/| _Bilz) (Qg(x) _ gg(o)) da 20 /l Py (z) (é(:p) B qZ;(O)) iz,

al<1 ||rthme al<1 ||

where the integrand is now integrable, since ¢(z) — ¢(0) = O(z). The last integral
in turn can be rewritten as

WICNE: — ¢ r = lim P () b(z) — & T
/ (b(2) = 6(0)) = 1 (d(x) ~ 3(0)) d

al<1 |z[PHF =0+ Jeclgj<1 |2[PTF
Py(x) -

’n—i—k

= lim (x) dx.

e—0+ e<|z|<1 |l‘
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Thus,

i [ e = [ o) a,

e—0+ lz|>e |ﬂ?|n+k

where v, = 0. Now, taking ¢(z) = f(y — z), thus ¢(z) = f(x)e 2™¥, we obtain

. Pr(x)
Tf(y) T el—lgl-&- |z|>e ‘.’L‘|n+k

P(z) 4 o
=) do = [ D faje2miovan
but the multiplier of T is, by definition, the function m with f} =mf, ie.

— [mia) i) e aa,

and we can therefore read of m(z) = i P|’; (|f) , finishing the proof. O

Theorem 7.11. The following two classes of transforms on L?(R™) are identical:

(1) Tf = cf + limeyo f|y|>€ ‘y|n)f(ac — y) dy, where Q is homogeneous of degree

0, Jon1 Qdo =0, and Q € C°(S"1),
(2) Tf mJf, where m is homogeneous of degree 0, and m € C>(Smh).

Proof. Use Q(x) = > 72, Yy, with the Yp-term absent because of [¢,_1 Qdo = 0,
and m(z) = > 72, Vi, and the previous theorem, which in fact gives Y;, = 7, Y. O

As an application of let’s consider linear elliptic operators. Suppose P is a
homogeneous degree k polynomial. P is said to be elliptic if p(x) # 0, Yz # 0.

Theorem 7.12. Let P be as above and assume that f € C*. Then
2\ 0
{5, ) flee < GollP(z ) fllze, Vial =k, 1 <p<oo

Proof. Given |a| = k, define m(y) = % and let T" be the operator with multiplier
m. Then T has the nice property that

(O yep =1(p(2y )

Now since m is smooth on S"~! and homogeneous of degree 0, by and the
theory of singular integrals developed earlier, we have

1) Pl < CoPCo) s
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8. LITTLEWOOD-PALEY THEORY

Let f € LP and let

u(z,y) = A flx —t)Py(t)dt,z e R",y € Ry

be it’s Poisson integral. We let V, = (8‘971, RN 8‘97”) and let V denote the gradient
in both z and y.

Definition 8.1 (g-function). For f € LP, define

o)) = ([ 1Vute ) Puin
D)) = (| 5t Pudn)

()() = ( /0 Vau(z, ) Pydy) 2,
Note that g7 + g3 = g%

It turns out that the LP-norm of g(f) is comparable to that of f itself. More
precisely, we have the following result:

Theorem 8.2. Let f € LP(R™) where p € (1,00). Then g(f) € LP(R™). Moreover,
(8.1) Apll fllze < Ng()llze < Apllfllze

Proof. First we notice that the case p = 2 follows from Plancherel’s identity. Indeed,
we can write

u(:v, y) — f-(t)6727r|t|y6727riz-tdt

gu(xa y) = / (—27T|t|)f(t)e_2W|t|ye—27rix-tdt
Yy n
gu :/ (—27Titi)f(t)e_2W|t|ye—27ria:-tdt
Ty n

So by Plancherel’s identity,
| Gl = / P fOPe = [ |Vaate,)Pdo
R” R

Therefore the L2 -norm of ¢;(f) is given by

8u:ﬂ
lgr (P72 = // y|2ddt

_ / / y4w2|t|2e*4“‘t'y|f<t>Pdtdy
0 n

- [ 1P [Mtﬁ / e“'t'yydy] at
R” 0
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/ F )2 [1/0006—%(12] dt

= L1713

Similarly, we can show that

o213 = 112

Hence, using the relation g3 + g3 = g%, we have

o2 = 311713

For general p, we will apply the vector-valued version of sigular integral theory
developed earlier. Define the following two Hilbert spaces:

Hi = C; Ho = {(fo, f1,--» fu)lfi € HS}
HY = {f] /0 |FPydy < oo}

Then since H; = C, the space of bounded linear transforms B(#1, Hz) is isomorphic
to Ho itself.
Next we define the kernel K.:
Kg(x) _ (8Py+s7 6Py+6, e 8Py+e)
y ox1 oxy,
and let T, f(x fR" (z — t)dt. We want to verify the following properties of
K. in order to apply smgular integral theory:

(1) K.(z) takes value in Ho = B(H1, Ha).
(2) K e LQ(R” 7‘[2)
(3 )
(4) !K ( )I <1/v2
Recalling the definition of the Poisson kernel

Y
(|22 + y2)n+172

* AP
/ | W\ ydy < 0
0

o0 (9P
/ | 8y+a\2ydy<0
0 e

Py(z) =

So it’s not hard to check that

This establishes property (1).
Next we check property (2). Note that

[ 9P > ydy
K.(z)? :/ T2 Ly P ydy < /
| Ke(2) |3, ; [| By ’ ’ vtel” | ydy < c o (zZ+ |y +e2)ntt
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< ydy _ fe—2n
- /0 ly + 2D O(™™")

C’l’|_2n
Therefore K. € L?(R", Ha).
Property (3) can be verified by a direct computation. Finally, notice that
@) = [ IVutey +2)dy < o))
So we have, for each f in L?(R"),
1
1T ll2 @) < N9(H) 2 = E!lf\lm-

This gives a L°°-bound on the multiplier K. and establishes (4), i.e.

A 1
1K ()] < 7

Therefore we can apply the vector-valued version of and get
ITefllzr(mn p1z) < Apll fllze, 1 <p <00
Now since liH(l) Vu(z,y+e) = Vu(z,y) for all y > 0, by Fatou’s lemma we have
e—

o
oDl = [ Vuta,y)Pydy < limint 1. £(2)
0 e—0
Therefore, using Fatou’s lemma again, we get, for 1 < p < o0,
(82) lo(H) e < m inf 172 e < Apll s

Hence we’ve proved the second inequality in (8.1). Finally we’ll use a duality argu-
ment to establish the first inequality there.
Recall that

1
o)1= = 51112
Polarizing this equality gives
1 o0
3 | @R = [ [ V)Vt gdyds
Rn

Hence if we let ¢ = 2= be the dual exponent of p and take f; € L*(R™) N LP(R™),
f2 € L2(R™)N Lq(R”) Wlth | f2lle = 1, then

5l [ n@h@l < [ ahath)de (Hoiden

9(
R
< llg(fllLrllg(f2)l[Le (HOlder again)
< llg(fu)lle Agllf2]lza (by (8-2))
= Agllg(f)llzr
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Therefore we get

1f1llzr < Aqllg(f)ll e
This establishes the first inequality of (8.1)). ]

Remark 8.3. We can define higher-order analogues of the g-function by considering

[e%¢] 8k 1/2
gr(f) = [/O Ia;,f(x,y)Qly%‘ldy}

Then we get gx+1(f) > crgr(f) and that ||gx(f)||z» is comparable to || f||» for & > 1.
Next we consider another function related to the g-function.

Definition 8.4 (g}-function). Given f € LP, let u denote it’s Poisson integral, we
define

o0 An 1/2
(53) gi(f)tr)==[j£ L () |Vnwx-—t,yn2y1—"dun4

1/2
(8.4) suxx»—[AJVumw—amkaﬂﬁ@ﬂ

where T is given by
I ={(t,y) e RIIt] <y}

Theorem 8.5. We have the following pointwise bounds:

(8.5) 9(f)(x) < CS(f)(x) < Crgr(f)(x)
Proof. We first prove the second inequality in (8.5). This follows from the observa-

tion that over I,
n 1 An
() =)
[t +y 2

Recalling the definitions (8.3)) and (8.4), we get
S(f)(@) < Cxngi(f)(@).
Next we prove the first inequality in (8.5). Given y > 0, we define
B, = The ball centered at (0,y) touching I

Since Vu is harmonic, by the mean-value property,

1/2
(8.6) Vu(0,y) = m(l&/)/B Vu(z, t)dzdt < (m(lBy)/B ]Vu(:r,t)‘%aﬂt)

Therefore we have

9(N02 = [ ulVuly.0)Pdy
0
< /O ym(lBy) /B V(e t)|2dedtdy (by (B8))
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S/ cy_”/ \Vu(z, t)2dzdtdy
0 By

To continue, note that there exist constants ¢; and ¢y such that
(z,t) e By=c1t <y <cat
Thus

gumeSAWQ/ﬁé\vw%wWMﬁ@

cot
S/ [/ y”dy] \Vu(z, t)>dzdt
I cit

< c/tl_”|Vu(x,t)|2da:dt
r

= cS(f)(0)?
Finally note that for all x € R,

SUNw) = [ 1Vute— teg) Py "drdy = [ Vult.g) Py "drdy
r I'(z)

where I'(z) = z + T is a shifted cone. Thus if we consider I'(x) instead of I" in the
above argument, we would get

9(f)(x) < eS(f)(z)
this proves the first inequality in (8.5 O

As is the case for the g-function, we can compare the LP-norm of gy with that of
f. Specifically, we have the following result:

Theorem 8.6. Let f € LP(1 < p < o0) and suppose that A > 1 and p > 2/X. Then

(8.7) lgxllzr < Cpall fllze
Proof. We first do the easier case where p > 2.

Claim 8.7. For any nonnegative function i the following holds:
(88) | sn@roin < [ g(paMu)ds

Proof of claim. To see this, note that the left-hand side equals

/}Rn Y(x) [/n /Ooo!Vu(x—t,y)Z <|t|?iy>my1”dtdy] "
‘_/RAMMVMLMF[4fﬂ@<“_;+y>my”Miﬁ@

< CM/ g(f) () Mp(t)dt (by 1.5 and X > 1)
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This proves the claim. Note that we need A > 1 so that (1+|z|)~" is integrable. [

If we plug ¥ = 1 into (8.8)), then we get (8.7) for p = 2. When 2 < p < o0, let ¢
be the dual exponent of p/2, so that 1 < ¢ < co. Then

sup / G (N)(@)*(x)dz < sup / g(F) (@) Mp()da
19l Le=1/R" |¥||La=1JR™

< lg(I2 | M)l 1a

< A F120 1]l 20 = Al £3 (by ET and 1.6)

Hence

lgxllze < AllFNZs
and we’ve established forp>2, A> 1.
To finish the proof in the general case, we will need the following lemmas and
definition:

Lemma 8.8. If u is a harmonic function, then

A@W?) = p(p — 1)u" | Vul?.

Lemma 8.9. If F(x,y) is continuous on Rﬁ“ and decays “suitably fast” at oo, and
is C? on Riﬂ, then

/ yAF(x,y)dzdy = F(z,0)dz.
Rn+1 Rn
+

For example, the decay conditions |F(z,y)| = O((|z| + |y|)~""¢) and |VF(z,y)| =
O((|z| + |y))™""17¢) are “suitably fast.”

Definition 8.10. We define the weighted maximal function

M, () (@) = sup (Wl)‘ /B » rny)dy) ’

Lemma 8.11. For f € LP(R™), p > p > 1, let u(x,y) denote the Poisson integral
of f. Then

(1) Ju(e —t.y) < A 1+ 4)" M()(@)
2) fule — t,9)] < A4 (1+0) 7 1,1 @)
Proof. As the statement is invariant under scaling (x,y,t) — (Ax, Ay, Az), it suffices
to prove the lemma for y = 1. Note that
ju(z =, 1) = |f * Pr(z — t)] < A M(f)(x),

where A; is the L'-integral of the “dominant function” of the Poisson kernel, i.e..

1
() == ¢, sup =T
o/ |>]2| (14 |z" —t]) 2
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Because |¢] < C for |x| < 2|t and |y < A(1 + |:U|2)_HT+1 for |z| > 2|t|, we see that

A= Pr(z)dz < O((1+ [t])").

reRn?
This proves (1). For (2), Holder’s inequality (and [, Py(s)ds = 1) implies that

o=t = ([ Aeie-t-9as) < [ e i-9peas

We will treat the right hand side as the Poisson integral of |f|* and call it U(x,y).
By (1) applied to U(z,y), we obtain

lu(x — t,y)| < |U(x —t,y)|»
1 |t] m 1
SAu@+y)zva@w

:h%<y+T)ZManm» :

Now, we can finish the proof of the theorem. For 1 < p < 2 and A > %, choose
1 < p < pso that

NemA_ 2Py

7
By Lemma

t
we -t < (1+ 1) an
Using this and Lemmas 8.8 and [8.9] we obtain

n
Vu(z — t,y)|?dtdy
0=/ /gm () et

_ m /RW i ( Y )M V2P (2 — 1, y)A(WP) (2 — t, y)dtdy

Y+ |t]

Nn
ylfn Y A(uP)(x — t,y)dtdy .
y)ERYT!

< A (NP [ v+

(t7

J/

=I*(x)
Note that

An
x)dx = / / ( > AWP)(t,y)dzdtdy
/:EGR" RO :EGR" y+ [t W)t:)

=Cyvn / yA(uP)(t, y)dtdy
Rn+1

= meup(t, O)dt

= Cxvall fliTs




38 NOTES BY CHENG, CHODOSH, EDELEN, HENDERSON, HINTZ, AND MANTOULIDIS

The first equality follows from a shift in = and the second follows from the fact that

y Nn
yin (> dr = C>\/7
/mGR” Y+t — "

by a change of variables. Using this, we have

/ G5 (P ()de < / ALy M,(f) 5P (@) (2) S de
xER™ xER™

2—p 4
2-pp, pP
< Aupllflie IS
= Aupll Iz,
which finishes the proof. O

[NIiS)

Theorem 8.12. If m(z) is C* on R™\ {0} for some k > . Assume that for every

multi-index o, we have that
() oo

Then, the associated operator satisfies | T fllLe < Apll fllze for all f € L?> N LP.

< Blz|™“.

Example 8.13. If m(x) is homogeneous of degree 0 and C*° on the sphere, then it
defines a bounded operator Tp, : LP — LP.

Proposition 8.14. Under the same assumptions on m(z) as in Theorem[8.19, if
f e L2(R") and F(x) := Ty, f, then

g1(F)(z) < Bagx(f)(),
where A = 27”

This proposition implies the theorem, because if p > 2, then A > 1.
[T flle < llg1(F)llze < Ballga(f)llzr

1
(recall that ¢1(f) = (fooo \%u(m,y)?ydy) ). If 1 < p < 2, then we might not have

p > % However, we can reduce this case to the previous one by duality. Now, we
prove the proposition.

Proof. We set
iz, y) = e 2TV f(x)
Uw,y) i= e " m() f ().

Here, both Fourier transforms are in the x variable only. Let

M(z,y) = /e2ﬂix't62ﬂ|ym(t)dt.
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Then,
Uz, y1 +y2) = M(z, y1)a(z, y2),
for y = y1 + y2. In particular,
Uz, y1 +y2) = M(t,y1)u(z —t,y2)dt.
teR™
Differentiating with respect to 1, k-times, and yo once, we have that
U(k+1) (‘T) y) = M(k) (ta yl)ul ($ - t, yQ)dt
teR™
Letting y1 = y2 = §, we have
(k+1) _ k) (p Yy, 1 Y
U (l’,y) - M (t7 )’LL (m —t, )dt
tERn 2 2

The definition of M and decay properties of m(x) imply that
|MB)(t, )| < B'ly| " *
20 1) 3 < By
for |a| < k. Using this,

TR (2, y))|

u O —t, PP

<A [ W DR [ Loy,
tl<¥ 2 jt]> ¥ It]
=I1(y) =12(y)
which implies that
(g1 (F)(2))? = (grs1 (F)(2))?

:/ UED (2, )22 L dy
0

S/ Il(y)y%“der/O L(y)y**tdy
0

< B/ Vu(z — t,y)[Py'"dtdy + B"(g5(f))*
< BS(f)(z)* + B"(gx(/))?
< B(gr(f))*.

The middle inequality follows from the form of g5 and I>(y). This completes the
proof. O
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9. PARTIAL SUM OPERATORS

A key application of the Littlewood-Paley theory are dyadic decompositions.
Those in turn use partial sum operators, which we describe in this section.

Definition 9.1. If p C R" is a rectangle whose sides are parallel to the axes, we
define the operator S, : L*(R") — L?(R") implicitly by

@lef

This operator is certainly bounded on L? by Plancherel’s theorem, but in fact we
can extend this to the LP setting.

Theorem 9.2. If f € L>NLP, 1 < p < 00, and p C R™ is a rectangle as above, then
1Spflle < Ap £l 2e
with A, independent of p.
We will actually prove a stronger theorem:

Theorem 9.3. Let H be the space of £ summable complex sequences, and let R =
{pj};?ozl be an arbitrary sequence of rectangles in R™ whose sides are parallel to the

aves. For f € L>(R",H) define
Sr(f) = (Sp1 (1), 5p (f2), - )
If1 <p<ooand f € L?>NLP(R",H), then
ISR(NLr < Ap [ fllr-

Sketch of proof. There are four main steps in the proof.
Step 1. We prove the theorem under the assumption n = 1 and that each p; is
the same interval (—oo,0). Recall the Hilbert transform

1 _
Hf= Lty [ TE=9)
T Jyze Y
whose multipl'ier is mg(x) = isignxz. Then % has multiplier 1(_ ), so
S(—c00) = W The claim will follow from the following claim:

Claim. Let f = (f1, f2,...) € L*NLP(R",H), and set H f(x) = (H fi(x), H fa(), .. .).
Then ||Hf|lzr < Ap|[fllzr-

Proof of claim. If K(z) = Ids —=, then Hf = K = f. On the other hand K(x)
satisfies the LP theory of singular integrals that we have already discussed. ([l

Step 2. We now relax the assumption that all the rectangles be (—o00,0), and
instead require that they be p; = (—00,a;) for i = 1,2,... Then the theorem easily
follows from step 1, provided we know how to handle shifts from (—o0, a) to (—o0, 0).
Indeed,

— —~

f(@)e=?mea(§) = f(§ —a).
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Step 3. For arbitrary dimensions n > 1 we begin by assuming that the p; are
halfspaces, p; = {x € R" : 21 < a;}. The thing to note is that the indicator
function really acts on one coordinate so we can effectively try to reduce to the
one-dimensional case.

Let S((i)oo,ai) denote the operator on L?(R") acting only on the x; variable, i.e.

St e [ @1y n) = / FE €m0,y 20) L nap (€1) €7 2T0181 dgy.
R

We claim that S(l)

—00,a;
as f(z1,z2,..., x(n) = z]($1)h(x2, ...,Ty), or when it is a linear combination of such
things. On the other hand those functions span a dense subset of L?, so by continuity
and step 2 we can conclude ||Srf|rr < Ap || fllLe-

Step 4. The general case, with arbitrary n and arbitrary rectangles. This actually
follows immediately from step 3, since every rectangle in R" that we consider is the
intersection of 2n halfspaces. Apply step 3 a total of 2n times. g

=5, forall i, f € L?. This is obvious when f decomposes

Remark 9.4. One may naturally wonder whether the same result holds true when
rectangles are replaced by other simple objects in R™. Charles Fefferman notoriously
constructed a counterexample to the assertion when the cutoff function is a disk
instead of a rectangle [?]. More precisely,

Tf=1sf
does not define a bounded operator 7" : LP(R™) — LP(R"™), unless p =2 or n = 1.

10. DYADIC DECOMPOSITION

Definition 10.1. We define the dyadic decomposition of R to be

R={0}U (U [zk,2k+1]) U (U [—2k L —2’f]> :
keZ keZ
The collection of intervals [2F,2F+1], [-2F+1 —2F] above is called A (or A! when
highlighting the dimension).
Correspondingly we can decompose R” in a similar way by first decomposing our
axes as described, and then considering the rectangles that form. The corresponding

collection A (or A™) then consists of elements p = I, X --- 1, where I, =
[2mi 2mitl] op [—2mitl _gmi],

The first observation one makes is that, for all n,
Id= )8, in L*(R")
pEA
and since 1,,1,, = 0 when p1 # po,
12 = > 1Suf 117
pPEA

When p # 2 the situation is more complicated.
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Theorem 10.2. Let f € LN LP(R"), 1 < p < co. Then
By || fllze < 1Y 1S, 1) 2 lle < Ap 1 f 1o
pEA

Remark 10.3. By the standard duality argument it suffices to show either one
of the two inequalities above. For example, if we manage to show the rightmost
inequality

(10.1) 110 B2 llee < Apl1f 2o,

pEA

then we can obtain the inequality on the left by observing that:

fg' ‘/ Zspfspg < I Z‘Spf‘ )2 o I( Z|Spq’ )14

pEA pEA
< Aq( Z |Spf| 1/2HLP llallza,
pEA

then taking the supremum over all ¢ € L? N L9, and then using the (L9)* = LP
duality.

The proof of ((10.1]) is going to make extensive use of the Rademacher function
1 on |0,1/2],
r(t) = e
0 on(1/2,1)

extended periodically on R and r,(t) = r9(2™t). Note that the r,, are pairwise
orthogonal in L?[0,1]. If {a,, }m € ¢? then we can define

Zamrm ,te[0,1].

By orthogonality it’s simple to see that ||F||7, = > lam|*>. We're going to

employ the following useful fact:

(10.2) e [Flle < [IFle < &[]

[0,1]

The n dimensional analog of the Rademacher function uses the family of functions
Tm : R — R, m € N defined by 7, (t) = v, (t1) - T, (tn). I {@m bmenn is £2
summable, then we may still define

F(t)= Y amrm(t), t€Q=1[0,1]",
meN”

which satisfies the corresponding estimate

IFlLr ~ |1 FllL2 = Z\a )72,



WANG - MATH 258 - HARM. ANALYSIS AND ISOP. INEQ. - LECTURE NOTES 43

Proof of Theorem[10.9, n = 1. Let A' be the family of dyadic intervals in R. In-
stead of looking at S, we look at the mollified operators S, defined implicitly by

Spf = Pp f
where ¢ is a smooth function, ¢ = 1 on [1,2], ¢ = 0 outside [0,4], and 0 < ¢ < 1
elsewhere, and ¢, (z) = p(27%z) when p = [2F,2¥*1]. Note that S, = Sp:S';.
For t € [0, 1] define
ﬁ = Z Tm(t) g]m

m

mi(x) = Z rm(t) o1, ().

m

whose multiplier is

Fixing z, there exist at most three nonzero terms in the sum above and in fact we
can bound | ()| +|z| |8, ()] < B. By applying[8.12|we know that T} : LP — LP,
1 < p < 00, is bounded independently of . Therefore

1 1 .
WA= [VEAd= [ ] 150 S s dedt

> [ (5 Br f@)PP2 s
1 U
The last step used estimate ([10.2)). By taking p-th roots,
IO 1S5, £ lle < Ay |1 £l o
m

Notice that we are almost done, except we have shown the result for S f instead of
Sf. Note that Sy, Sr1,, = S1,,,, so if we apply theorem to the map

F:x— Sy, f(z)}m € P
and the collection of rectangles R = {I,;,},n, then
1O 10 Y2 llee = (1SR FNee < I 198, /1) P llee < AL 1 f 120,
peEA m
which completes the proof when n = 1. O
The difficulty in the case n = 1 was the fact that we had to go through mollified

partial sum operators in order to prove (10.1)). Now we can just treat that as a black
box and avoid the mollified operators altogether. In accordance with this, let’s set

Tif(x) = > rm(t)Ss, f(x)
meN”T
as I, runs through the dyadic rectangles, and r,, runs through the n-dimensional

Rademacher functions. By applying the left hand side inequality of Theorem [10.2
forn=1to Tif

ITeflle < epllCD 1SpTef 12)2| s

pEAL
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then by the orthogonality of the Rademacher functions

< cpll( Z |Spf|2)1/2HLP

pEATL
and finally by the right hand side inequality of Theorem ([10.2)) for n =1 to f
< cplfllee,

or in other words, ||T;f|rr < ¢y || fllLe for n = 1.

Proof of arbitrary n. First we extend this last inequality to arbitrary n. Let
T, 11) be the operator above acting on the first coordinate, i.e.

o0

T F(@r,mn) = D m (0) SV (@ ).

m1=0

By the inequality above,
/R ‘T;E(ll)f(xlv ey xn)|p dZCl S Cp/R |f(l'17 ) ,xn)|p dwl-

Integrating over zo, ..., Z, too gives H]}(ll)fHLp < ¢p ||f|lz». Follow the same steps
for each of the remaining coordinates sequentially on the functions

1 2) (1 1
Tt(l)f(xlw'wxn) ~ t(Q)Tt(l)f(x17“'7xn)M MR < t(,,;n) 1}(1).]0(:1:177*%71) :Ef7

the last equality holding true by definition of the Rademacher functions in higher
dimensions. Then by iterating the single-variable estimate,

1 1
ITif e = 1T T fllee < o < e 1T flliw < cp |1 £ 1o
Integrating over all t € Q = [0, 1],

sl 2 [ [ ims@pdrar= [ [ 150 s, 5@ drde

_ (z) p
= [ POy g da.

By the special properties of this F-function described prior to the proof of the n =1
case, the LP and L? norms are comparable. As such,

il 2 [ IFOOg = [ (18, i
p

which is the required result upon taking p-th roots. O

This essentially concludes our discussion of dyadic decompositions. The takeaway
point is that when we want to use sharp cutoff functions we need to work harder in
proving our theorems by mollifying first. In fact, not all sharp cutoff functions are
bound to work.
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In practice it might be a better idea to use smooth cutoff functions, because
we can apply our previous singular integral multiplier theory on them. Consider a
smooth function ¢ : R™ — R such that

¢ >0, ¢ = const on Bj, ¢ = 0 outside Bs,
and for which ¥ (z) = ¢(x) — ¢(2x) satisfies

> v =140
j=—00

Then this smooth cutoff function provides a dyadic, radial, annular decomposition
of the form

=3 A, where A;F(€) = 6(277€) F(¢).
j=—00

This decomposition does satisfy the equivalent of Theorem [10.2

IO 185722 e = £ 1o
j

11. BOURGAN-BRESIZ INEQUALITY

We start with a threefold motivational excursion.
Part I. Suppose you’re looking to solve

divY = f
for a given f € L™(R™). Clearly you solve this in the class Y € W'"(R") = {|VY;] €
L™} because you can first solve Au = f, get f € L*(R") = Vu € W'*(R") by
elliptic regularity, and set Y = Vu.
Question: can you solve this in the class Y € L*°(R™)? Remember, Sobolev
embedding fails in the critical case p = n so that’s of no assistance here.

Part II. The counterpart of Sobolev embedding in the global space R" that
replaces WH™ with Wh" is:

Proposition 11.1 (Gagliardo-Nirenberg). For any u € C°(R"™),
[ul| pn/n—1 < en [[Dul[ 1.

Part I1I. As remarked, W™ (R™) &4 L% (R™), but the following theorem provides
a remedy for the situation:

Theorem 11.2 (van Schaftingen). If f, g are compactly supported vector fields on
R"™ and divf = 0, then

\ / f~g\ < collfllor Vel

Of course this would be trivial if there were an embedding W™ < L but there
isn’t one.

Now let’s return to Part I. The question asked is answered in the affirmative by
the following:
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Proposition 11.3 (Bourgain-Brezis). There exists ¢, > 0 such that for any f €
L™(R™) we can find Y € L® N WLYR™) with divY = f, [|[Y||lre < cn || fllzn-
It turns out that Propositions and are equivalent.

Proof of Proposition[11.3 = Proposition[T1.1. We estimate the L™ "fl norm of u
by duality. For f € L"(R"™) arbitrary, by there exists Y € LN W17 (R") with
divY = f. Use of the weak definition of divY = f yields

Jut|=|[wavy

Since f € L™(R™) were arbitrary, ||ul|;n/m-1 < ¢, [|[Vullp:. O

< IVl 1Y Lo < en [[Vullpr [ f]lzn-

Proof of Proposition = Proposition [11.3, Let (L')" denote the space of vector
fields on R™ with L' components, and consider its subspace E = {Vu € (L))" :u €
C*(R™)}. Given f € L™(R™) we may define the linear operator T': E — R

T(Vu) = —/uf
By Holder’s inequality and then by Proposition [11.1
IT(Vu)| < [ul|pnm-1 [[fllLn < en[Vullpa [ £l 2n,

so T : E — R is a bounded linear operator with ||| < ¢, || f||z». By Hahn-Banach
we can extend this to a bounded linear operator T': (L')™ — R with || T|| < ¢, ||.f||zn.
By (L')* = L* duality there exists Y € (L>)" such that

T(v):/Y-v Vve (LhH
By construction, ||[Y||z~ = ||T|| < ¢ ||f||z», and

—/uf:T(Vu):/Y-Vu Vue CF(R"™)
so divY = u in the required weak sense. [l

In fact, in the above proposition we may view the vector field Y as a 1-form and
divY as d*Y. Then admits the following generalization:

Theorem 11.4. Suppose | # n — 1. Then for any (I + 1)-form X on R™ with
coefficients in W1 there exists an (I+1)-form Y with coefficients in L™ such that

'Y =d*'X
Recall that is equivalent to [[I.I] By the same token, is equivalent to
the following generalization of due to L. Lanzani and E. Stein:

Theorem 11.5. Suppose u is a smooth l-form with compact support in R™.
(a) Ifl #1 orn—1, then
(11.1) [ull gr/n—1 < C(lldul[ 1 + [[d"ul[ 1)
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(b) Ifl=1 orn—1, then
(11.2) [l grn-1 < Clldullgn + [|dul[31)
where H' denotes the Hardy space.

We will next show that |1 - and thus |11.4) is equivalent to First we state
an equivalent form of [T1.2}

Theorem 11.6. Let f= (f1,---, fn) be a compactly supported vector field on R™
with div f= 0, and let g be a compactly supported scalar function. Then

(11.3) /R £19 < ClANL Vgl

Proof of |11.6| (or|11.2) = |11.5. We’ll only prove part (a). Note that when = 0 or
n, reduces to the usual Gagliardo-Nirenberg inequality.

Next suppose 1 <l < n — 1. Let u, @ be smooth [-forms with compact support
on R™. We write

(u, ) = (u, (dd* + d*d)A™ ")
= (du,dA™ @) + (d*u, d* A1)

:/nz(du)l(dA‘lso)zdw/ Z (d*u) (d* A7 ) yda
I

wherer I and J run through the set of non—decreasmg (I 4+ 1)- and (I — 1)-tuples,
respectively.

(11.4)

For each (I + 1)-tuple I = (i1,--- ,4;41) in the first summation, since [ + 1 < n,
there exists i € {1,--- ,n} such that ¢ is not in I. Next recall that
I+1
0= (d2u>m'17... A1 — al(du)[ - Z (91 (du
v=1

where [, is obtained by replacing ¢, with i. Therefore for each I we can find a
divergence-free vector field of which (du); is one of the components. This allows us

to apply and obtain
(11.5) |(du, dA™ )| < Cl|dul| 1 |[ VA ol e < Clldul|p1][| 2

where the last inequality follows from the estimates on singular integral operators.
Noting that [ > 1 and (d*)? = 0, we can estimate the second summation in the
last line of (11.4)) using the same idea and get

(11.6) |(d*u, d" A )| < Cld*ul 1 [l pll -
Combining (11.4)), (11.5) and (11.6), we get

|(u, ©)| < C(lldul| g2 + [|d ul| 1)@l
Since ¢ is arbitrary, we conclude that

[ull pryn-1 < C(lldulpr + [[dul[ 1)
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Before showing the reverse implication, we give a proof of We’'ll need the
following lemma.

Lemma 11.7. Let ® be a smooth compactly supported function on RN. Given
p> N and d > 0, there exists a decomposition of , & = &1 + ®o, such that

11| < C8' NPV Lo

(11.7)
V@3]l < CO NPV 10

Proof. Consider the annular Littlewood-Paley decomposition ® = ) A;®, as de-

J
scribed in the concluding remarks of the previous section. Next we fix M > 0 such
that 2M ~ ¢! and write

o) = Z A;® (high frequency)
i>M
by = Z A;® (low frequency)
J<M
To proceed we’ll make use of the following Bernstein inequality:

Claim 11.8. For 1 <p < q < oo, we have

(11.8) 185 fllze < C2NGTD 7)1
Proof of Claim. Recall that A; f is defined by
K7€) = () (@)
Inverting the Fourier transform and letting ¢ = K , we get
(11.9) Aif=2NK(27.) % f
(11.8]) now follows from an application of the Young’s inequlity. ([l

We continue with the proof of Recall that 1) is smooth and supported in
By — By 3, so the following function is smooth

o(§) = ;@fg

Let G be defined by G = ¢. Then

K(€) = $(6) = 2mi€e(€) = 2mieG(&) = VG(©)
Hence K = VG. Using and integrating by parts, we have

A(@) = [ VKIS =)y

270 [ 2GRV - )y
]RN
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An application of Young’s inequality as in the proof of now gives
14;®]| e < C27IENP)| T 1
Summing over j > M, we get
[@1]|z < C27MUTND VD 1 < O5 NPV D| o

This proves the first inequality in (11.7]).
Next for each j < M we apply (11.8) to V@, getting

18, V| L < C2NP| V|1
Summing over 7 < M, we get
IV@2loe < C2MNP|VO|| 10 < CENP| V|0

49

0

Proof of[11.6 Write z = (x1,2'), where 21 € R and 2/ € R""1. We introduce the

following notation:
O* (') = & (1, 2")

Fixing x1 € R, apply with N =n—1 and p = n. Then we get ®*! = &7 + &?

with
17| oo -1y < CEY/™ V' || 1 (1)

(11.10) . Cmmly o
V@5 || oo mn—1) < CO [V [ o (men1)

where V' denotes gradient in the a’-variable. Next let f= (f1, -, f,) and ® be as

given in the statement of and consider
/Rnl fre%da’ = /]R”l ff14>3161d$/+/ﬂ%n1 fredtde’ = I+ 11
By Holder and (11.10)),

1] < C8V™ | £7| 11 g1 IV @7 || po )
As for I1, we have

11 = '/R [/ 1 &gff(x/)dt] BT da!

T1 n
/ / = oiff(a)dt| 5 da’
L K
Integrating by parts, applying Holder and using (11.10]), we get
_n=1
LI < I fll @y IV @5 oo (rn-1) < CO™ 7 || fl| 1 mmy IV ¥ || Lo (-1

Now we choose § such that

(div £ = 0)

n—1

£ £ ra=1y6Y™ = || £l 1 nyd 7

Then we conclude that

T (b:(,‘ld /
/]Rn—l fl *

< ||+ 11|

(fundamental theorem of Calculus)
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1/n x nT_l T
< CI At 1 gy 1927 | o vy

Finally, we integrate the above inequality in x

f1Pdx| = / [/ fgl@xldm/] da
R™ R |LJRn—1
1/n z "Tfl =
S C’f‘L/l(R”)/RHf IHLI(Rnfl)HV,(I) IHLn(Rnfl)dl'l
< Clflpr @) IV®| Lo (rny (Holder)
and we 're done. 0

Proof of[11.]] = [11.9 Let f, g be vector fields on R™, such that divf = 0. Inter-
pret f and g as (n — 1)-forms f, g with df = 0. Write ¢ = da + d*3, and we have
that

(f,9) = (f,de) + (f,d*B) = (f, dev)
By we can find an (n — 1)-form ¥ € L™ such that
{ d*V = d*(da)
W[z < Clld*(de)||r = Clldg||r
and hence do = ¥ + d*v for some 7. We therefore have

(£, 9)l = |(f, da)| = |(f, ©)] < (I Fl 2 [[W]|zoe < Clf |2 lld gl Ln
which completes the proof. O

In fact one can prove more delicate versions of [11.4] [11.5] and [11.2]
Theorem 11.9. (B-B) Given any (14 1)-form X with coefficients in W R™ (I #
n —1), we can find an (I + 1)-form Y, with coefficients in W™ N L> such that

{ d*X = d*Y
Y ||pee +[|VY|[zn < Cl|VX]|Ln

Theorem 11.10. (B-B) Given any l-form u (I # 1,n — 1), with coefficients in
C°(R™), then

v < O(ld"]

[ ]

L4+W Ly btt)

Theorem 11.11. (B-B) If f, g are vector fields on R", with coefficients in C°(R™)
and divf = 0, then

] / f-g\ (1S ——C

Note 11.12. Recall that if By, Bo are Banach spaces, then B; N By and By + Bo
are Banach spaces, with norms

|16l B:nB = [16l] B, + [16]] B,

|16l Bi+-B, = inf{|[f]|B, + [lgllB, : b= f + g for f € B1,g € Bs}
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And further, (B N B2)* = B} + B3. We make the definition
Wbatt = (b

Proving the equivalence of these three is relatively straightforward, following the
same ideas as before. The main lemma towards proving is the following.

Lemma 11.13 (Main Lemma). Given 6 > 0, we can find an As > 0 such that
for every f € WL, there exists an I € W1 N L™ approzimating f all but one
direction, in the sense that

{ 2ia 10:(f = F)llzn < 0|V S| zn
1F[[Lee + [V F[[n < As|[V ]|

(note the sum misses the first index)

Proof of|11.15 = |11.9. Here is the key idea of the proof: when computing d*
of a (¢ + 1)-form (provided ¢ < n — 1), in each component some index remains
uninvolved.

Take a (¢+1)-form X in W (AT, R™). We can find an o(® € Whn(ATT R?)
such that

o =d*X and ||[Va9 || < C||d*X]|1n
For given multi-index I of length ¢ + 1 < n, there is an i ¢ I and ﬁ}o) approxi-
mating ago) in all but the i*" direction:
{ 152529581 = a2 < 8] Vay” |1
18 Nl + 11V8” | < Asl| V||
which implies that for an appropriate choice of § we have

{ |d*(X = BO)|[n < CO]|d* X || = 1/2]|d* X||n
189w + [[VBO|n < Al|d*X]|n

Repeat with X — () in place of X, and deduce the existence of a sequence *)
in W1 N L*> such that
18| pee +1VB®||Ln < 27FAl|d" X |0

for every k, and
K
1" (X = BN)[pn <2757 d* X |10
k=1

Let Y =3 8%, and the theorem follows. O
We work towards proving [[1.13] We make use of the algebraic relation

1= a; [[ O=ap)+]]0 -0
1<y'<y
which holds for infinitely sums provided each a; € [0,1]. A probablistic interpreta-

tion of the above can be found in flipping coins of probabilities a;: each summand
in the RHS is the probabily of getting a "heads” after precisely j flips.
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Recall the Littlewood-Paley decomposition: f = > A;f =: > f;. If we can find
functions G; such that |f;| < G; <1, then the sum

Y f]Ja-6Gy)er

one could then try setting F' (as in the lemma) to be this sum. We find

f—F= Zf]l_Hl_Gj’))

3>

ShYe 1 0-a)

J 3> 1<5" <y’

=365 T -6
j 1<j"<y
:ZGJ»HJ»
J

defining H; = 3, fj [[;jn<;(1 — Gj») < 1. We then estimate

0i(f = F)| <Y 10:Gy| + [0: H,|
J
<Z 0G5+ > 10ifyr] + 0G|

J'<J

Ultimately we need to bound [|>_; 9;Gj|[, in terms of [V f|[,,. This won’t hold
with the naive choice G; = |A;f]|.

Here are two possible strategies:

(1) Control the low frequencies by the high frequences. Replace 27|A; f| by

218G FIX(@18, 1155, <, 2518011}
in which case

1D @185 fIxq e < [[sup 27 A f]| e
- J
j
< Q@ADL
J
<[IVfllLn
(2) Control the spatial directions. Choose functions w; with
1A f < wj < 1A fllze=
such that
|6iUJj| < 2j_awj for i = 2, ey

|O1w)] < 2w;
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Taking Gj = wj, we just need to control

n

. —1
[Isup 27wj|[pn < 27757 ||V f]|Ln

12. ISOPERIMETRIC INEQUALITIES IN NONPOSITIVE CURVATURE
Let M™ be a simply connected manifold with non-positive sectional curvature.

Conjecture 12.1. The isoperimetric inequality is valid: For all bounded domains
) C M, we have

vol(2) < C(n) area(aQ)n/(n—l)’
where C(n) is the constant for round balls in R”, i.e. C(n) = vol(B)/ area(dB)"/(»~1.

In dimension n = 2, this was proved by Weil; in dimension n = 3, there are
various approaches by Kleiner [?], Ritoré [?] and Schulze [?] (the latter uses a flow
by a power of the mean curvature scalar). We will present Kleiner’s approach later
in this section. First, we will discuss Croke’s proof which works in all dimensions
but is only sharp for n = 4. Let us also mention than in a similar direction, Hoffman
and Spruch proved a Michael-Simon inequality for non-positive sectional curvature,
namely if X" C M"*! then

(n—1)/n .
</ \u|"/("_1) da) <C (/ lu| - |H| + |Vul do> )
x 5

The idea of Croke’s proof in n = 4 dimensions is to represent the volume and
area of 2 C M by the integral over the unit tangent bundle of 9€2. We change our
notation to match the one of Croke:

o (M™ OM™) is a compact set in a manifold with non-positive sectional cur-
vature,

e UM denotes the unit tangent bundle of M,

e UOM denotes the unit tangent bundle of M over OM, i.e. UOM = Ugpy M,

e UTOM denotes the unit upper hemisphere in UOM. The measure on UT9M
is the local product measure du where the measure of the fiber is that of the
unit upper hemisphere;

e for v € UM, =, is the geodesic with 7/ (0) = v, and we put

0(v) == max{t | 1, (t) € M},

so that v,(¢(v)) € OM;
o for p € M and u € U, OM, let cos(u) denote the cosine of the angle between
u and n,, the inward unit normal to M at p, i.e. cos(u) = (u,np).

Lemma 12.2. (Santalo) For any integrable function f on UM, we have

L(u)
(12.1) . f(v)dv = /U+8M/0 f(u(t)) cos(u) dt du.
1

Lemma 12.3. (1) vol(M) = == [;7+op (u) cos(u) du.

Wn—1
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(2) If ant(u) denotes the opposite vector at the end of the geodesic starting at
uwe UTOM, i.e. ant(u) = —,,(£(u)), then

(12.2) /U+8M g(u) cos(u) du = /U+8M g(ant(u)) cos(u) du.

Proof. For the first part, simply use f =1 in Lemmal[I2.2] For the second part, note
that means that the geodesic flow £ is a measure-preserving map from Q) =
{(u,t) |u e UTOM,t € [0,£(u)]} to UM, where Q is given the measure cos(u) dt du,
and £ has an inverse (smooth almost everywhere), also measure-preserving, which is
evidently given by ¢~!(v) = (—v"_,(£(—v)),£(—v)) for v € UM. Since the antipodal

—v
map —1: UM — UM is also measure-preserving, we see that

e o (=1)o&: (u,t) — (ant(u), f(u) —t)

is also measure-preserving. But this means that for every integrable G: Q — R, we
have

£(u) £(u)
/ / G(u,t)cos(u) dt du = / / G(ant(u), (u) — t) cos(u) dt du,
utom Jo utom Jo

so plugging in G(u,t) = g(u)/¢(u) and integrating out ¢ (note that ¢(u) = ¢(ant(u))),
we obtain (12.2]). O
Lemma 12.4. (1) We have
/ n—1
/ Hw™ du < area(OM)?,
u+anm cos(ant u)

and equality holds iff M is flat and convez.
(2) We have

/ cos(ant u) /™2 cos(u) "/ ("=2) gy, < vol(OM)ea(n),
UtoM

for some universal constant co(n), with equality iff cosu = cos(ant u) for all
ue UTOM.

Proof. For the first inequality, let dx denote the volume form of M and dp the
volume form of dM. Use polar normal coordinates (u,r) at ¢ € OM and consider
exp{tu | u € USOM,t € [0,£(u)]}, then dz = F(u,r)dudr, where F is the Jacobian;
now since M is non-positively curved, comparison tells us that F(u,r) > r"~1. But

clearly
I ——
v om cos(ant u)

where A, C OM (with equality holding for all ¢ iff OM is convex), and integrating
this over OM yields

Flu, (w) u < area 2
/U+3M cos(ant u) du < (OM)".

Using F(u,f(u)) > ¢(u)"~! finishes the proof of the first part.
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We next prove the second inequality: Using Holder’s inequality and Lemma [12.3
we estimate

/ cos(ant u) /"2 cos(u) "/ ("=2) gy
U+oM

= / cos(ant u) Y2 cos(u)/ =2 cos(u) du
Utom

1/2 1/2
< (/ cos(ant u)% 2 cos(u) du) (/ cos(u)? "2 cos(u) du>
U+toM UtoM
= / cos(u)™ "2 cos(u) du
U+oM

:/ / cos(u)™ (=2 dug | dq
oM \JUSoM

= vol(OM)ca(n),
where

co(n) = /U+8M cos(u)™ "2 du

(which is of course independent of ¢). Equality holds iff cos(ant u) = k cos(u). Since
cos(u), cos(antu) € [0, 1], and both attain the value 1 at some point, we must have
k=1. O

We are now ready to prove the isoperimetric inequality:

Proof of the isoperimetric inequality, sharp for n = 4. Using Holder and Lemma/|12.4]
we estimate

vol(M) = ! /U+6M 0(u) cos(u) du

Wn—1

! / tw) cos(ant u) /™ cos(u) du

"~ wpo1J cos(antu)l/(n=1)

1 1/(n-1) ne ne1 o \RSE
1 (/ £(u) ) du) (cos(ant u)’féﬁ COS(U)T_é du) "

Wp—1 cos(ant u

area(OM )/ (=1 (area (M )c(n)) (n=2)/(n—1)

IN

Wn—1
(n—2)/(n—1)
=2 (n) area((?M)”/("*l).

Wn—1

In order to have equality, we get
/¢ n—1

RO = Acos(ant u)" "2 cos(u)
cos(ant u)

which for n = 4 means ¢(u)? = X cos(ant u) cos(ant u)'/? cos(u)?/2, and from the

case of equality in Lemma we also know cos(ant ) = cos(u); hence £(u) =
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A3 cos(u) when n = 4, which is exactly the equation of a ball with diameter A'/3
in Euclidean space. (Note that flatness follows from the first part of Lemma [12.4])
Let us remark that in the above proof, if n # 4, we would get that M is flat
and cos(u) = cos(antu) in the case of equality still, but this would give ¢(u) =
A cos(u)?("=2); such M however does not exist. O
3

Next, we present Kleiner’s approach to the isoperimetric inequality in n =
dimensions. Recall that we have the isoperimetric profile function

I (V) = inf{area(0Q) : Q@ C M compact, C*°, vol(2) = V'}.

If Q minimizes Iy/(V) for V = vol(Q2) we call 2 an isoperimetric domain. We're
going to need the following result on the existence and regularity of isoperimetric
domains in bounded sets, which we will treat as a black box.

Theorem 12.5. Let B™ be a compact manifold with smooth boundary OB™, and let
V € (0,vol(B™)). Then there exists a domain @ C B™ with boundary ¥ = 0 such
that:
(1) vol(R2) =V, area(X) = Ig(V),
(2) (when n =3,) % is CY' in a neighborhood of OB",
(3) there exists a singular set Ygng C X Nint B of Hausdorff dimension < n —
8 such that (X Nint B) \ Eging s a C° hypersurface with constant mean
curvature H,
(4) the mean curvature h of ¥ is defined a.e. and h < H.

Remark 12.6. The first and third claims are standard in geometric measure theory.
The second claim pertaining to boundary regularity is due to [?]. The last claim
follows by a variational argument. Suppose u is X-deformation supported in the
interior of B, and v is a ¥-deformation supported on 9B, and such that [, v = [ u
to preserve volume. By minimality,

/nHuZ/nhv.
by by

Since H is constant where u is supported,

WH > fz nhv _ fz nhv
fz“ fz“

for all v. In view of v being arbitrary and the differentiation theorem, H > h.

Remark 12.7. Ip(-) is continuous. In other words, if €; is a sequence of isoperi-
metric domains with vol(€2;) — V/, then area(0%;) — Ip(V).

Theorem 12.8. Let M? be simply connected, complete, noncompact, with sec <
C < 0. Then its isoperimetric profile function satisfies Iy > I]ng'

The theorem is going to follow from the following proposition. In fact the propo-
sition implies the theorem in all dimensions, but we can only prove the proposition
when n = 3.
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Proposition 12.9. Let M3 be simply connected, complete, noncompact, with sec <
C < 0 Let Q be compact, CH1, ¥ = 0. Then

mSXH > HHF,C(area(E)),

where HH% (area(X)) is the mean curvature of the geodesic ball of area equal to

area(X) in the model hyperbolic three-space H?(’; with curvature C.

Proposition = Theorem, arbitrary n. Fix Q C M?3. Choose a geodesic ball B large
enough that Q@ C B C M™. Let Qy be an isoperimetric domain in B with vol(Qy ) =
vol(Q2) £ V. Let Hy be the constant mean curvature of {2y on its interior regular
part. Then by the proposition, Hy > Hpp, (area(0S2y)).

Choose a volume-decreasing deformation of €2y supported on the interior regular
part. Call the deformed surfaces Qyay, for AV <0, and vol(Qyay) =V + AV.
By minimization, Ig(V + AV) < area(0Qy4+av ), so for AV < 0:

Ip(V+AV) —Ig(V) N area(0Qyay) — area(0Qy)

AV - AV
i.e. the left derivative of the isoperimetric profile satisfies D_I5(V) > nHpp, (I5(V)).
On the other hand in the model case we have I{H% (V) = nHyp, (I, (V)). The two
isoperimetric profiles agree when V' = 0 so by integrating the differentials,

area(df)) > area(9y) = Ip(V) > Igp (V).

—nHy > nHHg(IB(V)),

0

Proof of proposition, n = 3. First we do the case where ¥ = 9 is a topological SZ.
By Gauss-Bonnet and the Gauss equation,

47r:/K:/sech+k1k2§/C+H2S(C—I—mSXH?) area(X).
b p) b

We would get exact equality in hyperbolic space, so maxs; H > Hys, (area()).

Let’s check the rigidity claim when X = 0. If equality holds above then secry =
C, which is also the upper bound for sectional curvatures on M3, and ¥ = 9Q
is umbillic, whose mean curvature matches the mean curvature of the appropriate
geodesic ball in hyperbolic space. These conditions force 2 to be a geodesic ball in
HZ.

CNOW let’s look at general domains 2. Let Dy be the convex hull of 2, and let
Dy = {x € M : dist(z, Dy) < s} be the s-fattening of Dy. Then at least for s > 0
small enough, Dy is also convex, Cy = 0D, is a topological S?, and there exists a
sufficiently smooth closest point projection r : M3\ Dy — ¥. By Gauss-Bonnet,

471':/ K:/ SeCTE+k1k2(CS>
Cs Cs

</ C + kyhs(C)
Cs

:/ C + k1ko(Cy) +/ C + k1ka(Cs)
rs 1 (2NaDy) Cs\rs ' (2N9Do)
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< / C+ H(%S + C area(Cs \ 73 {(£ N D))
Ts_l(EﬂaDo)

+C k1ka(Cs).
Cs\r5 1 (£ndDo)
The middle term is < 0 since C' < 0. Welet s | 0. In doing that, the first integral can
be estimated from above by (C' + H, %0) area(X N 0Dy) because the Riccati equation
gives controlled growth rate bounds on H. The last integral converges to zero, since
on the regular points of 9Dy \ ¥ we have kjko = 0 because we're on the part of the
convex hull of ¥ that lies away from Y. Putting it all together,

4 < (C + HE) area(X N IDy) < (C + HE) area(X).

Like we argued before, if were were on hyperbolic space we would have gotten
equality all along. Therefore, Ho > Hys (area()). O

Now we give the proof of the 3-dimensional isoperimetric inequality due to Ritoré.
Let M3 be a complete, simply-connected 3-manifold with non-positive sectional
curvature and let 3 be an embedded compact surface.

Pick a point p € ¥ and let d,(-) be the distance to p. Consider the following
conformal change of metric

2e
1 +e2d?

2Ue

ge = pgg = e“"g, where u. = log

We will prove the following inequality:

(12.3) / H%do > 41
P

with equality iff 2 is flat. Note that (12.3)) implies for if ((12.3) holds, then we

have
area(E)(mEax H)? > / H%do < 4n = area(E)(HHg (area(X)))?
)
and thus holds. As shown previously, this implies

Proof of (12.3)). Recalling that the sectional curvature of a 2-plane o in T'M before
and after the conformal change of metric are related by

ezusKs(U) =K(o) - V2u5(ei, €i) — V2u5(€j, ej) + (Veius)Q + (Vejus)z - |Vu5]2

where {e;,e;} is an orthonormal basis for o with respect to g. Plugging in the
expression for u. and applying the Hessian comparison theorem (M has non-positive
sectional curvature), we arrive at

KEEQUE Z K + 6211,5

To continue, we first write

/HQda:/(Hz—i—K)da—/Kdo.
% P %

Note that K denote the sectional curvature of T3 with respect to the ambient metric
g and NOT the Gauss curvature of X.
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Next we write

H2+K:H2—I{152+IQ1I£2+K

= |A]* + (k1k2 + K)
then we see that

/E (H? + K)do

is conformally invariant. Hence

/HQda:/(H2+K)da—/Kda
b b))
/(H2+K Ydo. — /Kda
/ Hdo. + / (e* K. — K)do
Z/Hgdaa—f—/daa
) %
Z/das
b

Using the fact that letting ¢ — 0 corresponds to blow-up at p with a spherical
metric, we have

lim | do. = 4n
e—0 »

Hence (12.3)), and thus is proved O

Next let’s turn our attention to compact manifolds and discuss Levy and Gromov’s
isoperimetric inequality. For a smooth domain 2 in the standard sphere S™, define
the following function
vol(By)
vol(S™)’
where B, is a geodesic ball with vol(B,) = avol(S™). Then the classical isoperi-
metric inequality says that

Ign (a) ==

vol(€2)
vol(S™)
In 1919, P. Levy generalized this result to convex hypersurfaces in R"*!. Later,

Gromov extended Levy’s method to all Riemannian manifolds with a lower bound
on the Ricci curvature [?7].

area(0€) > vol(S™)Ign (), where a =

Theorem 12.10. Let M™ be a closed manifold with Ric > (n — 1)g. Then for any
smooth domain Q) in M, we have
vol(€2)

area(0Q) > vol(M")Ign (), o = vol(M™)
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The proof relies on a comparison theorem due to Levy, Heintz and Karcher, which
we state below. Let H"~! be a smooth hypersurface of M and define the following
map:

exp: H xRy = M
(h,t) — expy(tv)
where v is a unit normal vector field. Let J(h,t) denote the Jacobian of this map.
Next consider a model pair (M, H) where M has constant sectional curvature k and

H has constant mean curvature n. We denote the corresponding Jacobian by J.
There’s an explicit formula for J = J,, ;,, namely

_ dSk(t) nl I

In(h,t) = < Fra NSk (t) , Sk(t) = ﬁsm Vkt
With these notations, the Levy-Heintz-Karcher comparison theorem says the fol-
lowing.

Theorem 12.11. With the above notations, supposing in addition that Ricps >
(n—1)kg and that the mean curvature of H at h with respect to v is bounded below
by 1, we have B

[ J(h, )] < Tk (t)
Proof of[12.10. Fix a € (0,1), and consider all the hypersurfaces in M that divides
it into two parts, 2 and M/Q, with

vol(2) = avol(M)

A theorem of Almgren guarantees the existence of a hypersurface 02 in this class
having constant mean curvature, which we denote by 7. (Strictly speaking, the 02
produced by Almgren’s theorem may have a singular set, but it does not affect our
arguments. )

For h € 09, let ¢(h) be the distance to the first focal point along the normal
geodesic expy, (tv) and assume that v points into €2, then

c(h)
(12.4) vol(Q) :/ / J(h,t)dtdo
o0 Jo

Combining [12.11} and (12.4)), we get

By _
(12.5) vol(92) < area(dQ) / " Tt

0
where B;fl is the first positive time when jn,l = 0. Note that if we take € to be a

geodesic ball in S™ of radius B:; , then we would get equality in (12.5]). Therefore
Al(@%)

Vi(B,1)

where A;(r)(Vi(r)) denote the area(volume) of 0B, (B,) in S™. Note that A;/V; is
decreasing in r.

area(d)) > vol(09)
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Now if the radius of By, r(Ba,), is greater than or equal to 8, then

n,1
A1 (r(Ba))
Vi(r(Ba))
~ vol(f2)
= Sol(B.) area(0B,)
~ vol(M)
= Sol(5") area(0B,)

= vol(M"™)Ign(cx)

area(0Q2) > vol(Q)

and we are done. On the other hand, if r(B,) < ,87'; 1, then we reverse the normal
vector field so that it points into M/Q and redefine J and .J, 1 accordingly. Letting
B,1 be the first time when Jy1(t) = 0, we must have r(Bgy) > 8,1 by assumption.
Now the argument from the previous case applies. [l
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