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We would like to thank Yi Wang for an excellent class. Please be aware that
the notes are a work in progress; it is likely that we have introduced numerous
typos in our compilation process, and would appreciate it if these are brought to
our attention.

1. Maximal functions

We will be working on Rn and we will denote Lebesgue measure by m.

Definition 1.1. Suppose f ∈ L1
loc(Rn). The maximal function is defined as

Mf(x) = sup
r>0

1

m(B(x, r))

∫
B(x,r)

|f(y)| dy.

Example 1.2. If f is continuous with compact support on Rn, then Mf(x) ∼
C |x|−n for |x| � 1.

Definition 1.3. Suppose µ is a measure (ordinary, signed, or complex). Its maximal
function is defined as

Mµ(x) = sup
r>0

1

m(B(x, r))

∫
B(x,r)

|dµ|(y).

Example 1.4. If δ0 is the Dirac measure at 0 ∈ Rn, then Mδ0(x) = Cn |x|−n for
all x ∈ Rn.

Maximal functions come up in the study of convolutions, as the following estimate
suggests.

Proposition 1.5. Let f ∈ L1
loc(Rn), φ ≥ 0 smooth, radially symmetric and decreas-

ing. Then
|(f ∗ φ)(x)| ≤ CnAMf(x),

where

A =

∫
Rn
φ(x) dx.

Proof. It suffices to show this for x = 0. Using n-dimensional spherical coordinates,

(f ∗ φ)(0) =

∫
Rn
f(y)φ(0− y) dy =

∫ ∞
0

∫
Sn−1

f(rθ)φ(r) rn−1 dθ dr

=

∫ ∞
0

Λ′(r)φ(r) dr = −
∫ ∞

0
Λ(r)φ′(r) dr

where

Λ(R) ,
∫ R

0

∫
Sn−1

f(rθ) rn−1 dθ dr =

∫
|x|≤R

f(x) dx.

By the definition of the maximal function, |Λ(R)| ≤ CnRnMf(0). Then

|(f∗φ)(0)| ≤
∫ ∞

0
C(n) rnMf(0)φ′(r) dr = CnMf(0)

∫ ∞
0

rnφ′(r) dr = C ′nAMf(0),

having integrated by parts in the last step. �
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Proposition 1.6. The following are true:

(1) If f ∈ Lp(Rn) for p ∈ [1,∞], then Mf(x) is finite for a.e. x.
(2) If f ∈ L1(Rn) then Mf ∈ L1

w(Rn), and

m{Mf > α} ≤ Cn α−1 ‖f‖L1.

(3) If f ∈ Lp(Rn) for p ∈ (1,∞] then Mf ∈ Lp, and

‖Mf‖Lp ≤ Cn,p ‖f‖Lp.

Remark 1.7. Clearly (1) follows from (2), (3), so we can just prove those. Also,
note that we cannot improve (2) to show Mf ∈ L1. If f is continuous and compactly
supported, then of course it is L1 but Mf(x) ∼ Cn |x|−n is not L1.

Proof of (2). Let Eα = {Mf > α}. Then for all x ∈ Eα there exists rx > 0 such
that ∫

B(x,rx)
|f(y)| dy > αm(B(x, rx)).

The balls B(x, rx) cover Eα. Note that the radii rx are uniformly bounded:

rx ≤
(

1

α

∫
Rn
|f(y)| dy

)1/n

.

By the 5-covering lemma there exists a sequence of disjoint balls B1, B2, . . . among
the B(x, rx) such that ∪i5Bi covers Eα. Then

5n
∑
i

m(Bi) ≥ m(Eα).

At the same time, by our construction of rx we have

5n
∑
i

m(Bi) ≤
5n

α

∑
i

∫
B(xi,rxi )

|f(y)| dy ≤ 5n

α
‖f‖L1 ,

and the result follows. �

Proof of (3). We use the following trick; define

f1(x) ,

{
f(x) if |f(x)| > α/2

0 else

Then |f(x)| ≤ |f1(x)|+ α/2, so Mf(x) ≤Mf1(x) + α/2, which in turn gives hat

Eα = {Mf > α} ⊆ {Mf1 > α/2}.
By (2) on f1,

m(Eα) ≤ 2 · 5n

α
‖f1‖L1 =

2 · 5n

α

∫
|f |>α/2

|f(x)| dx.

On the other hand we also have∫
Rn
|Mf(x)|p dx =

∫ ∞
0

pαp−1m(Eα) dα ≤
∫ ∞

0
pαp−1 2 · 5n

α

∫
|f |>α/2

|f(x)| dx dα
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= Cn,p

∫
Rn

(∫ 2|f(x)|

0
αp−2 dα

)
|f(x)| dx ≤ C ′n,p

∫
Rn
|f(x)|p dx

which implies the required estimate. �

Corollary 1.8 (Differentiation theorem). For f ∈ L1
loc(Rn) and a.e. x ∈ Rn,

lim
r↓0

1

m(B(x, r))

∫
B(x,r)

f(y) dy = f(x).

Proof. Let
Ωf(x) , lim sup

r↓0
fr(x)− lim inf

r↓0
fr(x)

where fr(x) is the mean value of f on B(x, r). If g ∈ C0
c then it is easy to see that

Ωg ≡ 0.
If f ∈ L1

loc and ε > 0 then it is not hard to see that inside a ball B ⊂ Rn we can
decompose f = g + hε where g ∈ C0

c (B) and ‖hε‖L1(B) ≤ ε. Since Ωg ≡ 0, we just
need to understand Ωhε. But

Ωhε(x) ≤ 2Mhε(x)

so

m{Ωhε > α} ≤ m{Mhε > α/2} ≤ 2 · 5n

α
‖hε‖ → 0

as ε ↓ 0. Since ε > 0 were arbitrary, Ωf(x) = 0 a.e. x. The fact that the limit is in
fact what we expect it to be follows from the continuity of h 7→

∫
f(·+ h). �

2. Calderon-Zygmund decomposition

The Calderon-Zygmund decomposition, as we will see below, is simultaneously a
decomposition of functions as well as a decomposition of sets.

Theorem 2.1. Let f ∈ L1(Rn), f ≥ 0, and α > 0 Then we can decompose Rn so
that

(1) Rn = F ∪ Ω, for disjoint sets F closed, Ω open,
(2) f ≤ α a.e. on F ,
(3) Ω = ∪kQk for closed cubes Qk whose interiors are disjoint, and

a <
1

m(Qk)

∫
Qk

f ≤ 2nα

Corollary 2.2. We can decompose f ≥ 0 above into a ”good part” (g) and a ”bad
part” (b), i.e. f = g + b where

g(x) =

{
f(x) for x ∈ F

1
m(Qk)

∫
Qk
f for x ∈ Qk

and
b(x) = f(x)− g(x).

The ”good part”, g, is bounded:

0 ≤ g(x) ≤ 2nα.
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The ”bad part” has mean value zero on each Qk:∫
Qk

b = 0.

Proof of theorem. Since f ∈ L1, there exists a large enough diameter such that

1

m(Q′)

∫
Q′
f ≤ α

for all cubes Q′ of said diameter. Decompose Rn into a mesh of such cubes. Fixing
such a cube Q′, inductively divide it into 2n equal cubes Q′′. Certainly for each of
them either

1

m(Q′′)

∫
Q′′
f ≤ α or

1

m(Q′′)

∫
Q′′
f > α

is true. If the latter is true, stop subdividing the cube. At that stage it’s true that

1

m(Q′′)

∫
Q′′
f ≤ 1

m(Q′′)

∫
Q′
f ≤ 2n

m(Q′)

∫
Q′
f ≤ 2nα.

Have Q′′ be one of the Qk of Ω. Notice that only countably many such Qk get
constructed. Then set F = Rn \Ω. By the differentiation theorem, f ≤ α on F . �

Corollary 2.3. There exist A, B depending on n such that, for f , α, F , Ω, Qk as
above,

(1) m(Ω) ≤ A
α ‖f‖L1, and

(2) 1
m(Qk)

∫
Qk
f ≤ B α.

Proof. This is a trivial consequence of the theorem with A = 1, B = 2n. �

There is, however, an alternative proof of the corollary that provides better un-
derstanding for the sets F , Ω. It depends on the following lemma whose proof we
skip:

Lemma 2.4. Suppose F is closed and nonempty. Then

(1) we can decompose its complement Ω = Rn \F as Ω = ∪kQk, for closed cubes
Qk whose interiors are disjoint, and

(2) c diam(Qk) ≤ dist(Qk, F ) ≤ c diam(Qk) for a fixed constant c = cn.

Alternative proof of corollary. The correct way to think of F , Ω is as

F , {Mf ≤ α} and Ω , {Mf > α}.
These sets are closed and open, respectively, because Mf is lower semicontinuous.

Part (1) follows from the main theorem we proved on maximal functions, accord-
ing to which m(Ω) ≤ 5n

α ‖f‖L1 .
Part (2) follows from the lemma above. Fix Qk in the decomposition of Ω, and

let pk ∈ F be closest to Qk. Choose Bk to be the smallest ball centered at pk which
covers Qk. Then

α ≥Mf(pk) ≥
1

m(Bk)

∫
Bk

f ≥ 1

m(Bk)

∫
Qk

f ≥ c(n)

m(Qk)

∫
Qk

f
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which is the required result. �

3. Interpolation of Lp spaces

In this section we treat the Marcinkiewicz interpolation theorem. We need to
introduce some notation before stating the result.

Definition 3.1. An operator T : Lp(Rn)→ L1
loc(Rn) is said to be of

(1) (strong) type (p, q), for p, q ∈ [1,∞], provided ‖Tf‖Lq ≤ C ‖f‖Lp for all
f ∈ Lp,

(2) weak type (p, q), for p ∈ [1,∞], q ∈ [1,∞), provided m{|Tf | > α} ≤(
A
α ‖f‖Lp

)q
for all f ∈ Lp,

(3) weak type (p,∞) if it is of (strong) type (p,∞).

Remark 3.2. The definition of weak (p,∞) is in line with what you would obtain
from weak types (p, q) by setting q = ∞. If f ∈ Lp then for α � 1 we have
A
α ‖f‖Lp < 1, so

(
A
α ‖f‖Lp

)∞
= 0 and therefore |Tf | ≤ α a.e.

Definition 3.3. Let p1, p2 ∈ [1,∞] be given. We denote by Lp1 + Lp2 the set of
functions f that can be decomposed as g + h for g ∈ Lp1 , h ∈ Lp2 .

Theorem 3.4 (Marcinkiewicz interpolation). Suppose r ∈ (1,∞], and that T :
L1(Rn) + Lr(Rn)→ L1

loc(Rn) satisfies

(1) |T (f + g)(x)| ≤ |Tf(x)|+ |Tg(x)|,
(2) T is of weak type (1, 1), and
(3) of weak type (r, r).

Then T is of (strong) type (p, p) for all p ∈ (1, r).

Remark 3.5. It is implicit that we need to check that Lp(Rn) ⊂ L1(Rn) +Lr(Rn).
Indeed we can decompose f ∈ Lp as f1 + f2 where

f1 =

{
f if |f | > γ

0 else

and

f2 =

{
0 if |f | > γ

f else.

It’s not hard to see that f1 ∈ L1 and f2 ∈ Lr.

Proof. We treat the case r <∞; the infinite case only requires minor modifications.
Decompose f = f1 + f2 as above for γ = α. Since

|Tf(x)| ≤ |Tf1(x)|+ |Tf2(x)|
we have

{|Tf | > α} ⊂ {|Tf1| > α/2} ∪ {|Tf2| > α/2}
and therefore

m{|Tf | > α} ≤ m{|Tf1| > α/2}+m{|Tf2| > α/2}
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≤ A1

α/2
‖f1‖L1 +

(
Ar
α/2
‖f2‖Lr

)r
=

2A1

α

∫
|f |>α

|f |+
(

2Ar
α

)r ∫
|f |≤α

|f |r.

Then∫
Rn
|Tf |p = p

∫ ∞
0

αp−1m{|Tf | > α} dα

≤ p
∫ ∞

0
αp−1 2A1

α

∫
|f |>α

|f(x)| dx dα+ p

∫ ∞
0

αp−1 (2Ar)
r

αr

∫
|f |≤α

|f(x)|r dx dα

= Cn,p

∫
Rn

∫ |f(x)|

0
αp−2 dα |f(x)| dx+ Cn,p

∫
Rn

∫ ∞
|f(x)|

αp−1−r dα |f(x)|r dx

= Cn,p

∫
Rn
|f |p

�

Remark 3.6. By carefully keeping track of the constants above we get:

‖Tf‖Lp ≤ C ‖f‖Lp with C =

(
p

(
2A1

p− 1
+

(2Ar)
r

r − p

))1/p

.

What we’ve done here provides an alternative proof of the maximal function
theorem using Calderon-Zygmund decompositions.

Corollary 3.7. We know that the maximal function operator is of weak type (1, 1)
and (∞,∞). By the Marcinkiewicz theorem, it is also of type (p, p).

4. Singular integrals

Equipped with what we’ve developed so far, we can start to understand operators
defined by singular integrals. As a motivating example, we consider the Hilbert
transform, defined as follows:

Definition 4.1. Let f be a real-valued function, the Hilbert transform is defined
to be

Hf ≡ 1

π
PV

∫ ∞
−∞

f(x− y)

y
dy ( = lim

ε→0

1

π

∫
|y|≥ε

f(x− y)

y
dy )

whenever the right-hand side exists.

We shall see later that H extends to a bounded linear operator from Lp to itself
for 1 < p <∞. Before going into that, let’s fix some notations and recall the basic
facts about convolutions and the Fourier transform on Rn.

Below C0(Rn) will denote the space of continuous functions that vanish at infinity.
B(Rn) will denote the space of finite Radon measures on Rn, which is the dual space
of C0(Rn). Recall that the norm on B(Rn) is given by

‖µ‖ =

∫
Rn
d|µ|
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Moreover, by considering the correspondence

f 7→ fdµ

we can identify the space L1(Rn) with the subspace of B(Rn) consisting of measures
absolutely continuous w.r.t the Lebesgue measure. This is a proper subspace since
the Dirac δ-measure is not absolutely continuous.

As is the case of L1 functions, we can convolve measures in B with one another.
Specfically, we make the following definition.

Definition 4.2. Given two measure µ1 and µ2 in B, their convolution µ = µ1 ∗ µ2

is given by

µ(f) =

∫
Rn

∫
Rn
f(x+ y)dµ1(x)dµ2(y), ∀f ∈ C0(Rn)

Remark 4.3.

(1) By changing the order of integration and switching x and y, we see that
µ1 ∗ µ2 = µ2 ∗ µ1.

(2) We have the following inequality which guarantees that µ1 ∗ µ2 is again in
B:

‖µ1 ∗ µ2‖ ≤ ‖µ1‖‖µ2‖

Definition 4.4. Given a f ∈ L1(Rn) and µ ∈ B(Rn), define their Fourier transform
to be

F(f)(ξ) = f̂(ξ) =

∫
Rn
e2πix·ξf(x)dx

F(µ) =

∫
Rn
e2πix·ξdµ(x)

We summarize the important properties of F as the following proposition:

Proposition 4.5.

(1) Let f ∈ L1(Rn), then F(f) is in C0(Rn). Moreover, given another function
g ∈ L1(Rn), we have

(̂f ∗ g) = f̂ ĝ.

In other words, F takes convolutions into usual products in the phase space.
(2) (The Plancherel identity) Let f ∈ L1 ∩ L2(Rn), then

‖f̂‖L2 = ‖f‖L2

Thus, by continuity, F extends to an isometry from L2(Rn) to itself.
(3) (Extension of the convolution property) Let f ∈ L2(Rn) and g ∈ L1(Rn).

Define h = f ∗ g. Then

ĥ = f̂ ĝ

Next we look at convolution operators and state some important facts about
them.
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Fact 4.6. (Convolution commutes with translation) Fix y ∈ Rn and define the
operator τy by τyf(x) = f(x+ y). Moreover, take µ ∈ B(Rn) and define an operator
T : L1(Rn)→ L1(Rn) by

Tf = f ∗ µ
Then we have

τyT = Tτy

Fact 4.7. (Characterization of bounded linear maps on L1 that commute with trans-
lations) Let T be a bounded linear map from L1(Rn) to itself that commutes with
any translation. Then there exists a measure µ ∈ B(Rn) such that

Tf = f ∗ µ, ∀f ∈ L1(Rn).

Moreover, the operator norm of T is equal to ‖µ‖.

Fact 4.8. (Characterization of bounded linear maps on L2 that commute with trans-
lations) Let T be a bounded linear map from L2(Rn) to itself that commutes with
any translation. Then there exists a function m ∈ L∞(Rn) such that

T̂ f(ξ) = m(ξ)f̂(ξ), ∀f ∈ L2(Rn).

Moreover, ‖T‖ = ‖m‖L∞.

Remark 4.9. The function m in the last fact is called a multiplier.

Now we make our first step towards understanding operators defined by singular
integrals.

Theorem 4.10. Let K ∈ L2(Rn) and suppose

(1) ‖K̂‖L∞ ≤ B
(2) K ∈ C1(Rn − {0}) and |DK(x)| ≤ C|x|−n−1

For f ∈ L1 ∩ Lp(Rn), define Tf = K ∗ f . Then for all 1 < p < ∞, there is a
constant A = A(p,B, n,C) such that

‖Tf‖Lp ≤ A‖f‖Lp , ∀f ∈ Lp(Rn)

Remark 4.11.

(1) The constant A does not depend on the L2-norm of the kernel K.
(2) The Hilbert transform is not covered by this theorem since the kernel, 1/y,

fails the first condition.

Proof of theorem 4.10. The idea is to apply the Marcinkiewicz interpolation theo-
rem followed by a duality argument. Accordingly, the proof will be carried out in
three steps.
Step 1 (T is weak (2, 2))

This step is easy. Since ‖K̂‖L∞ ≤ B and T̂ f = K̂f̂ , by Plancherel identity we
have

‖Tf‖L2 = ‖T̂ f‖L2 ≤ B‖f̂‖L2 = B‖f‖L2 , ∀f ∈ L1 ∩ L2(Rn)

Hence, by continuity, T extends to L2 and is strong (2, 2). Thus T is weak (2, 2).
Step 2 (T is weak (1, 1))
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This step is where most of the work goes. We want to establish an estimate of
the form:

m({|Tf | > α}) ≤ C

α
‖f‖L1 , ∀α

Note that this would be easy if we know that ‖f‖∞ ≤ α, for then we deduce that

‖f‖2L2 =

∫
Rn
|f |2dx ≤ α‖f‖L1

Using the result of step 1, we can proceed as follows to get the desired estimate.

m({|Tf | > α}) ≤ 1

α2
‖Tf‖2L2 ≤

B2

α2
‖f‖2L2 ≤

B2

α
‖f‖L1

This suggests applying the Calderon-Zygmund decomposition to f at the level α.
Then we get:

(1) Rn = F ∪ Ω, F ∩ Ω = ∅
(2) |f(x)| ≤ α on F , and

α <
1

m(Qj)

∫
Qj

|f |dx ≤ 2nα, (Ω = ∪jQint
j )

(3) There is a constant C such that

C−1 dist(Qj , F ) ≤ diam(Qj) ≤ C dist(Qj , F ) for each Qj .

Furthermore, we also get a decomposition f(x) = g(x) + b(x), where

(1)

g(x) =

{
f(x) on F

1
m(Qj)

∫
Qj
fdx on Qj

, b(x) =

{
0 on F
f(x)− 1

m(Qj)

∫
Qj
fdx on Qj

(2) ‖g‖L∞ ≤ 2nα,
∫
Qj
bdx = 0 on each Qj .

As in the proof of Theorem 3.4, we have

m({|Tf | > α}) ≤ m({|Tg| > α/2}) +m({|Tb| > α/2})

To estimate the first term, we note that

‖g‖2L2 ≤ ‖g‖L∞‖g‖L1 ≤ 2nα‖g‖L1

Thus, using step 1,

m({|Tg| > α/2}) ≤ B2

(α/2)2
‖g‖2L2 ≤

2n+2B2

α
‖g‖L1 ≤

2n+2B2

α
‖f‖L1 .

As for the second term, since

m(Ω) =
∑
j

m(Qj) ≤
1

α
‖f‖L1 ,

it suffices to estimate m({|Tb| > α/2} ∩ F ).
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Fix a j, let bj = b|Qj and suppose that Qj is centered at yj . Then because b
integrates to zero on Qj , we have

Tbj(x) =

∫
Qj

K(x−y)b(y)dy =

∫
Qj

[K(x−y)−K(x−yj)]b(y)dy ≤
∫
Qj

C diam(Qj)

|x− y∗j |n+1
|b(y)|dy,

where we’ve used the mean value theorem in the last inequality.
Next recall that the cubes Qj satisfies

C−1 dist(Qj , F ) ≤ diam(Qj) ≤ C dist(Qj , F ) for each Qj .

⇒ |x− yj | ≈ |x− y∗j | ≈ |x− y| ∀y ∈ Qj
Therefore ∫

Qj

C diam(Qj)

|x− y∗j |n+1
|b(y)|dy ≤ C diam(Qj)

|x− yj |n+1

∫
Qj

|bj(y)|dy

≤ C diam(Qj)

|x− yj |n+1
m(Qj)Cα

≤ Cα
∫
Qj

dist(y, F )

|x− y|n+1
dy

and hence

|Tb(x)| = |
∑
j

Tbj(x)| ≤ Cα
∫

Ω

dist(y, F )

|x− y|n+1
dy

Integrating over F , we obtain∫
F
|Tb(x)|dx ≤ Cα

∫
F

∫
Ω

dist(y, F )

|x− y|n+1
dydx

≤ Cα
∫

Ω
dist(y, F )

∫
F
|x− y|−n−1dxdy

≤ Cα
∫

Ω
dist(y, F )

∫
r≥dist(y,F )

ωnr
−n−1rn−1drdy

≤ Cα
∫

Ω
dist(y, F ) (dist(y, F ))−1 dy

≤ Cαm(Ω) ≤ C‖f‖L1

Therefore,

m({|Tb| > α/2}) ≤ m(Ω) +m({|Tb| > α/2} ∩ F )

≤ m(Ω) +
C

α
‖f‖L1 ≤

C

α
‖f‖L1

and we’ve shown that T is weak (1, 1).
Step 3 (Interpolation and duality argument)

Having verified its assumptions, we can apply the Marcinkiewicz interpolation
theorem to deduce that

‖Tf‖Lp ≤ Ap‖f‖Lp , (1 < p < 2).
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For 2 < p <∞, let q be the dual exponent and recall that

‖Tf‖Lp = sup
ϕ∈Lq , ‖ϕ‖Lq=1

∫
ϕTfdx

Given a ϕ ∈ Lq with ‖ϕ‖Lq = 1, we have∣∣∣∣∫ ϕ(x)Tf(x)dx

∣∣∣∣ =

∣∣∣∣∫ [∫ ϕ(x)K(x− y)f(y)dy

]
dx

∣∣∣∣
=

∣∣∣∣∫ [∫ K(x− y)ϕ(x)dx

]
f(y)dy

∣∣∣∣
=

∣∣∣∣∫ f(y)T̃ϕ(y)dy

∣∣∣∣ ≤ ‖f‖Lp‖T̃ϕ‖Lq
where T̃ is the convolution operator with kernel K̃(x) ≡ K(−x).

It’s easy to see that K̃ satisfies all the assumptions of Theorem 4.10 with the
same constants B and C. Since 1 < q < 2, by the above arguments,

‖T̃ϕ‖Lq ≤ Aq‖ϕ‖Lq = Aq

so we have ∣∣∣∣∫ ϕ(x)Tf(x)dx

∣∣∣∣ ≤ Aq‖f‖Lp , ∀ϕ ∈ Lq, ‖ϕ‖Lq = 1

Hence for 2 < p <∞,
‖Tf‖Lp ≤ Aq‖f‖Lp

Recalling that we’ve covered the case p = 2 in step 1, the proof of the theorem is
complete. �

The condition on the decay of |DK| can actually be weakened, as the following
corollary shows.

Corollary 4.12. The conclusion of Theorem 4.10 remains true if we replace

(2) |DK(x)| ≤ C|x|−n−1

by the following condition

(2’) There is a constant B′ such that∫
|x|≥2|y|

|K(x− y)−K(x)|dy ≤ B′, ∀|y| > 0

Remark 4.13. (2) implies (2′) by the mean value theorem, so (2′) is indeed a weaker
condition.

Proof of Corollary 4.12.
It suffices to prove the estimate

m({|Tb| > α/2}) ≤ C

α
‖f‖L1

under the present assumptions. Again we apply the Calderon-Zygmund decompo-
sition to f at the level α to get
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(1) Rn = F ∪ Ω, Ω = ∪jQj , Qj centered at yj
(2) α ≤ 1

m(Qj)

∫
Qj
f(x)dx ≤ 2nα

(3) f = g + b

For each cube Qj , consider the cube Q∗j centered at yj with

diam(Q∗j ) = 2n1/2 diam(Qj)

Then it’s not hard to see that for all x /∈ Q∗j ,

|x− yj | ≥ 2|y − yj |, ∀y ∈ Qj .

Now let Ω∗ = ∪jQ∗j and F ∗ = Rn − Ω∗, then we have

m(Ω∗) ≤ (2n1/2)nm(Ω) ≤ C

α
‖f‖L1 .

Thus, in order to get the desired estimate, it suffices to bound

m({|Tb| > α/2} ∩ F ∗).

Following the proof of Theorem 4.10, we can write∫
F ∗
|Tb(x)|dx =

∫
F ∗

∑
j

∫
Qj

|K(x− y)−K(x− yj)||b(y)|dydx

=
∑
j

∫
Qj

|b(y)|
∫
F ∗
|K(x− y)−K(x− yj)|dxdy

≤
∑
j

∫
Qj

|b(y)|
∫
|x−yj |≥2|y−yj |

|K(x− y)−K(x− yj)|dxdy

=
∑
j

∫
Qj

|b(y)|
∫
|x|≥2|y−yj |

|K(x+ yj − y)−K(x)|dxdy

Applying condition (2′), we arrive at∫
F ∗
|Tb(x)|dx ≤

∑
j

∫
Qj

|b(y)|CB′dy ≤ C‖f‖L1

⇒ m({|Tb| > α/2}) ≤ C

α
‖f‖L1 .

�

Next we prove another result on singular integral operators.

Theorem 4.14. Suppose the kernel K satisfies:

(1) |K(x)| ≤ B|x|−n
(2)

∫
|x|≥2|y| |K(x− y)−K(x)|dx ≤ B, ∀ y

(3)
∫
R1<|x|<R2

K(x)dx = 0, ∀ 0 < R1 < R2 <∞



14 NOTES BY CHENG, CHODOSH, EDELEN, HENDERSON, HINTZ, AND MANTOULIDIS

Given ε > 0, we define

Tεf =

∫
|y|≥ε

f(x− y)K(y)dy

Then for all 1 < p <∞, there is a constant Ap, independent of ε, such that

‖Tεf‖Lp ≤ Ap‖f‖Lp , ∀ ε.

Moreover, for each f ∈ Lp, the limit

Tf = lim
ε→0

Tεf

exists in the strong Lp sense and satisifies

‖Tf‖Lp ≤ Ap‖f‖Lp

The following lemma will be important for the proof of Theorem 4.14.

Lemma 4.15. Let K be as in the theorem and define

Kε(x) =

{
K(x) , |x| ≥ ε

0 , |x| < ε

Then there exists a constant C, independent of ε, such that

sup
Rn
|K̂ε| ≤ C

Proof. We first prove the case ε = 1. It’s obvious from the definition that K1 satisfies
conditions (1) and (3) in Theorem 4.14. We’ll show that (2) holds for K1 as well.
This comes down to handling the following two integrals:
Case 1 ∫

|x|≥2|y|,|x|≥1,|x−y|≤1
|K(x)|dx ≤

∫ 2

1
Br−nrn−1dr ≤ CB

Notice that we’ve used condition (1) and the fact that

|x| ≥ 2|y|, |x− y| ≤ 1⇒ |x| ≤ 2

Case 2 ∫
|x|≥2|y|,|x|≤1,|x−y|≥1

|K(x− y)|dx ≤
∫ 3/2

1
Br−nrn−1dr

This time we use

|x| ≥ 2|y|, |x| ≤ 1⇒ |x− y| ≤ 3/2

Therefore K1 satisfies condition (2) as well. Now take an arbitrary y ∈ Rn, then
we have

K̂1(y) = lim
R→∞

∫
|x|≤R

e2πix·yK1(x)dx
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=

(∫
1≤|x|≤1/|y|

+ lim
R→∞

∫
1/|y|≤|x|≤R

)
e2πix·yK1(x)dx

= I1 + I2

Using condition (3) (K1 integrates to zero on annuli centered at 0), we write

|I1| ≤

∣∣∣∣∣
∫

1≤|x|≤1/|y|

[
e2πix·y − 1

]
K1(x)dx

∣∣∣∣∣
≤
∫

1≤|x|≤1/|y|
C|y||x|B|x|−ndx

≤ CB

To estimate I2, we first notice that by letting z = 1
2
y
|y|2 , we have e2πiz·y = −1 and

so we can write∫
Rn
K1(x)e2πiy·xdx =

1

2

∫
Rn
K1(x)e2πiy·x −K1(x)e2πiy·(z+x)dx

=
1

2

∫
Rn

[K1(x)−K1(x− z)] e2πix·ydx

Since the integral I2 is not over the whole space, we will pick up extra terms when
applying the above trick to it. Specifically, we have

I2 =
1

2
lim
R→∞

∫
1/|y|≤|x|≤R

[K1(x)−K1(x− z)] e2πix·ydx

− 1

2

∫
1/|y|≤|x−z|,|x|≤1/|y|

K1(x)e2πix·ydx+
1

2

∫
1/|y|≤|x|,|x−z|≤1/|y|

K1(x)e2πix·ydx

Since |z| = 1
2|y| , we apply condition (2) to get a bound on the first term∣∣∣∣∣

∫
1/|y|≤|x|

[K1(x)−K1(x− z)] e2πix·ydx

∣∣∣∣∣ ≤ B
For the second term, note that

|x| ≤ 1

|y|
, |x− z| ≥ 1

|y|
⇒ 1

2|y|
≤ |x| ≤ 1

|y|
Therefore∣∣∣∣∣
∫

1/|y|≤|x−z|,|x|≤1/|y|
K1(x)e2πix·ydx

∣∣∣∣∣ ≤
∫

1/2|y|≤|x|≤1/|y|
B|x|−ndx ≤ CB log 2

Similarly∣∣∣∣∣
∫

1/|y|≤|x|,|x−z|≤1/|y|
K1(x)e2πix·ydx

∣∣∣∣∣ ≤
∫

1/|y|≤|x|≤3/2|y|
B|x|−ndx ≤ CB log(3/2)

Adding up, we then get
|I2| ≤ CB
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and hence
|K̂1(y)| ≤ |I1|+ |I2| ≤ CB

Now we show why we may reduce to the case where ε = 1. For general ε > 0 take
K ′(x) = εnK(εx). Notice that this function has the same properties as K. Then we
have that Kε(x) = ε−nK ′1(εx) and hence that

|K̂ε(x)|(ξ) = | ̂ε−nK ′1(ε−1x)|(ξ) = |K̂ ′1|(εξ).
Since, by our work above, the right hand side is bounded, then the left hand side
must be bounded. �

We’ll now apply Lemma 4.15 to prove Theorem 4.14.

Proof. We know that Tε is weak (1,1) map by the results of Lemma 4.15 and by

Corollary 4.12. Moreover, we know that the map is bounded on L2 since K̂ε is
bounded and since Tε is simply convolution with Kε. Hence, by interpolation we
have that Tε is bounded as a map on Lp for all 1 < p ≤ 2. Moreover, since Tε is
self-adjoint, we may use duality as in the proof of Theorem 4.10 to get that Tε is
bounded as a map on 2 ≤ p <∞.

It remains to check that the Tε has a limit in Lp as ε tends to zero. We’ll show
this first for f ∈ C1

c (∞). Then we compute

Tεf(x) =

∫
|y|≥ε

K(y)f(y − x)dy

=

∫
1≥|y|≥ε

K(y) [f(y − x)− f(x)] dy︸ ︷︷ ︸
:=I

+

∫
|y|≥1

K(y)f(y − x)dy︸ ︷︷ ︸
:=II

.

Notice that we use the property that K has mean zero over annuli. Term II is
clearly independent of ε so we need not worry about it. Hence let’s check that the
first term has a limit. Since f is compactly support and is C1, then it is Lipschitz.
Let Cf be the Lipschitz constant of f and we have∫

1≥|y|≥ε
K(y) [f(y − x)− f(x)] dy ≤ Cf

∫
1≥|y|≥ε

K(y)|y|dy ≤ CfB
∫ 1

ε

1

|y|n−1
dy.

This last term is bounded independently of ε (which can easily be seen by changing
to polar coordinates). It is also easy to alter this argument to show that Tεf is
Cauchy is in the L∞ norm. Since term II in Tεf has compact support (it inherits
this property from f), it is then easy to see that Tεf is Cauchy in Lp. Hence Tεf
tends to an element that we call Tf as ε tends to zero.

So now you might believe that it is obvious that Tεf is Cauchy in Lp for any f .
In which case, skip this paragraph; otherwise we’ll show it here to be complete. Fix
δ > 0 and assume that g ∈ Lp and find f ∈ C1

c (Rn) such ‖f − g‖p ≤ δ. Then choose
ε0 small enough such that ε1, ε2 < ε then ‖Tε1g − Tε2g‖p ≤ δ. Then we have

‖Tε1f − Tε2f‖ ≤ ‖‖Tε1f − Tε1g‖+ ‖Tε2f − Tε2g‖+ ‖Tε1g − Tε2g‖ ≤ Apδ +Apδ + δ.

Hence Tεf is Cauchy. �
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A direct application of this is to the Hilbert transform. There our kernel is
K(x) = 1

πx , and so Theorem 4.14 tells us that the Hilbert transform is well-defined
and bounded on Lp for any 1 < p <∞.

Singular Integrals that commute with dilation. Define τεf(x) = f(εx). Then we look
at operators T such that τεTτε−1 = T . In the case that T is given by convolution
with a kernel, K, then this is the same as the condition

K(εx) =
1

εn
K(x).

In other words, when K is homogeneous of order n, or, K can be given by

K(x) =
1

|x|n
Ω

(
x

|x|

)
,

where Ω : Sn−1 → R. We will abuse notation and write Ω(x) for any x by simply
scaling x to be a unit vector.

Theorem 4.16. Define

ω(δ) := sup
|x−y|≤δ,
x,y∈Sn−1

|Ω(x)− Ω(y)|.

Suppose that

(1) Ω is bounded on Sn−1,
(2)

∫
Sn−1 Ω(x)dx = 0, and

(3) (Dini-type condition) ∫ 1

0

ω(δ)

δ
dδ <∞.

Define

Tεf(x) =

∫
|y|≥ε

Ω(y)

|y|n
f(x− y)dy,

and we have that ‖Tεf‖p ≤ Ap‖f‖p holds for all f and all ε. Moreover, we may
define Tf = limε Tεf , where the limit is in Lp. Moreover, for f ∈ L2 we may write

T̂ f(ξ) = m(ξ)f̂(ξ),

where m is homogeneous of degree zero and is, in fact, given by

(4.1) m(ξ) =

∫
Sn−1

[
iπ

2
sign(x · y)− log |x · y|

]
Ω(y)dS(y), for ξ ∈ Sn−1.
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Proof. Our condition on the integral of Ω gives us that the kernel has mean zero
over any annulus. Moreover, we may bound∫
|x|≥2|y|

|K(x− y)−K(x)|dx =

∫
|x|≥2|y|

∣∣∣∣Ω(x− y)

|x− y|n
− Ω(x)

|x|n

∣∣∣∣ dx
≤
∫
|x|≥2|y|

∣∣∣∣Ω(x− y)− Ω(x)

|x− y|n

∣∣∣∣ dx︸ ︷︷ ︸
:=T1

+

∫ ∣∣∣∣Ω(x)

[
1

|x|n
− 1

|x− y|n

]∣∣∣∣ dx︸ ︷︷ ︸
:=T2

.

We’ll first consider T2. Here we may use the mean value theorem to get

T2 ≤
∫
|x|≥2|y|

∣∣∣∣ |x|n − |x− y|n|x|n|x− y|n

∣∣∣∣ dx
.
∫
|x|≥2|y|

|y|n

|x|n+1|y|n−1
dx

.
∫ ∞

2|y|

|y|rn−1

rn+1
<∞.

Here we simply used that all norms on Rn are equivalent, the triangle inequality,
and that |x − y| ≥ |x| − |y| ≥ |x| − |x|/2. Now we will consider T1, making use of
the Dini-type condition. We estimate

T1 ≤
∫
|x|≥2|y|

ω
(∣∣∣ x−y|x−y| −

x
|x|

∣∣∣)
|x− y|n

dx

.
∫
|x|≥2|y|

ω
(

4 |y||x|

)
4 |x|

n

|y|n |y|n
dx

≈
∫
|z|≥8

ω(|z|−1)

|z|n
dz

≈
∫
r≥8

ω(1/r)

rn
rn−1dr

≈
∫ 1/8

0

ω(r)

r
dr <∞.

Here . (resp. ≈) means less than or equal to (resp. equal to) up to a constant
depending only on the dimension.

Hence, our conditions on Ω and the kernel, give us that the hypotheses of Corollary
4.12 are satisfies. Hence we know that T is well-defined. It remains only to show
that the Fourier multiplier m exists and is given by the claimed formula. By Fact
4.7, we know that there exists a Fourier multiplier, m ∈ L∞. In order to show that
m is homogeneous of degree zero, we will use a trick with the dilation operators to
show that m is invariant under dilation.
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To this end we look at the Fourier transform of T conjugated by τε and compute

F(τεTτε−1f)(ξ) = ε−nF(Tτε−1f)(ε−1ξ)

= ε−nm(ε−1ξ)F(τε−1f)(ε−1ξ)

= m(ε−1ξ)F(f)(ξ).

On the other hand, since T commutes with dilation, we know that

F(τεTτε−1f)(ξ) = F(Tf)(ξ) = m(ξ)Ff(ξ).

Hence it follows that m(ε−1ξ) = m(ξ), so that m is homogeneous.
Now we check that m has the form which we claimed. To this end we look at the

operator Tε,η defined as

Tε,ηf(x) =

∫
ε≤|y|≤η

Ω(y)

|y|n
f(x− y)dy.

Call Kε,η the kernel of this operator. We will show that K̂ε,η is bounded independent
of ε and η and that its limit is given by the formula in (4.1). We will show this
limit point wise, but one can check that the limit converges uniformly when x′ · y′
is bounded away from zero. Hence it follows that K̂ε,η converges to m. To that end
we rewrite the kernel as

K̂ε,η(x) =

∫
Sn−1

∫ η

ε
exp{2πiRrx′ · y′}Ω(y′)

dr

r
dS(y′)

=

∫
Sn−1

∫ η

ε

[
exp{2πiRrx′ · y′} − cos(2πRr)

]
Ω(y′)

dr

r
dS(y′)

=

∫
Sn−1

Iε,η(x
′, y′)Ω(y′)dS(y′).

(4.2)

Here we have defined

Iε,η(x
′, y′) =

∫ η

ε

[
exp{2πiRr(x′ · y′)} − cos(2πRr)

] dr
r
,

where we write x = Rx′ and y = rx′ with |x| = R and |y| = r. We compute the
limit of the imaginary part of this first

im(Iε,η) =

∫ η

ε
sin(2πRr(x′ · y′))dr

r
→
(∫ ∞

0

sin(t)

t
dt

)
sign(x′ · y′).

It is not difficult to show that the integral from ε to η is bounded independent of ε
and η. Using some complex analysis we may evaluate the integral here to obtain

im(Iε,η)→
π

2
sign(x′ · y′).

On the other hand, the real part of this is given by

Re(Iε,η) =

∫ η

ε

[
cos(2πRr(x′ · y′))− cos(2πRr)

] dr
r

=

∫ 2πRη

2πRε

[
cos(tx′ · y′)− cos(t)

] dt
t
.
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As with above, it is not difficult to show that this integral is bounded independent
of ε and η. Then we apply Lemma 4.17 to get that

Re(Iε,η)→ − log |x′ · y′|.

Putting this together with (4.2), we obtain

K̂ε,η →
∫
Sn−1

[
iπ

2
sign(x′ · y′) + log

1

|x′ · y′|

]
Ω(y′)dS(y′).

Since K̂ε,η converges as we take ε to zero and η to infinite, then K̂ε,η converges to
m, which implies that m is given by the formula in (4.1). �

Below, for completeness, we include a lemma which Yi alluded to but did not
include in the lecture.

Lemma 4.17. Suppose that h is C1, even, mean zero, and periodic with period T .
Suppose that 0 < |µ| ≤ 1. Then

lim
ε→0,
η→∞

∫ η

ε
[h(µr)− h(r)]

dr

r
= −h(0) log |µ|.

Proof. We’ll assume that µ > 0 without loss of generality. First we compute that∫ η

ε
[h(µr)− h(r)]

dr

r
=

∫ µη

µε

h(r)

r
dr −

∫ η

ε

h(r)

r
dr

=

∫ ε

µε

h(r)

r
dr −

∫ η

µη

h(r)

r
dr

=

∫ ε

µε

h(r)− h(0)

r
dr − h(0) log(µ)−

∫ 1

µ

h(r/η)

r
dr

→ 0− h(0) log(µ)− 0.

The first term tends to zero since h is Lipschitz and the last term tends to zero
because h is mean zero. �

5. Vector valued analogue

Take H a separable Hilbert space, and a map f : Rn → H. Define |f(x)| and
‖f‖Lp(Rn) as usual using the Hilbert space norm. We denote by B(H1,H2) the space
of bounded linear maps H1 → H2.

If K ∈ Lq(Rn,B(H1,H2)) and f ∈ Lp(Rn,H1) for p, q conjugate, then

g(x) =

∫
K(x− y)f(y)dy

converges in H2 a.e. x.

Theorem 5.1. All previous results concerning singular integrals are still valid in
the general setting f : Rn → H1, K : Rn → B(H1,H2). Here Tεf and Tf take
values in H2.
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Recall the Hilbert transform: given f : R→ R,

Hf(x) = lim
ε→0

1

π

∫
|y|≥ε

f(x− y)

y
dy

having multiplier function

m(ζ) = i sign(ζ) = i
ζ

|ζ|
The form of m immediately implies H2 = −1.

Proposition 5.2. Suppose T is a linear transformation, bounded in L2(R), and
satisfying:

(a) T commutes with translations,
(b) T commutes with positive dilations,
(c) T anti-commutes with reflections.

Then T is a constant multiple of the Hilbert transform.

Proof. Since T is bounded, linear, and satisfies (a), we have by fact 4.8

FT = mF
for some multiplier function m.

Properties (b) and (c) show that m(δx) = sign(δ)m(x), as follows:

τδm = τδFTF−1

= |δ|−1Fτδ−1TF−1

= |δ|−1 sign(δ)FTτδ−1F−1

= sign(δ)FTF−1

And hence m = C sign. �

Definition 5.3. Given f : Rn → R, the Riesz transform Rf is defined by

Rf(x) =
1

π|Bn−1
1 |

lim
ε→0

∫
|y|≥ε

y

|y|n+1
f(x− y)dy

Lemma 5.4. Let m : Rn → Rn be homogenous of degree 0, and suppose m commutes
with rotations. Then

m(x) = C
x

|x|
for some constant C.

Proof. For any x 6= 0, we have for an appropriate rotation matrix ρ

m(x) =
1

|x|
m(ρe1) =

1

|x|
ρm(e1),

where e1 is the first unit coordinate vector. It suffices to show m(e1) = Ce1. But
follows because every rotation ρ fixing e1 necessarily fixes m(e1), and (up to scaling)
e1 is the only vector fixed by all such matrices. �
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Proposition 5.5. Let T = (T1, . . . , Tn) be a vector of bounded linear transforma-
tions on L2Rn. Suppose each Ti commutes with translation and positive dilation,
and hence by fact 4.8 we have functions mi homogenous of degree 0 such that

FTi = miF

Then if m = (m1, . . . ,mn) commutes with rotation, T is a constant multiple of R.

Proof. By lemma 5.4 we know m(ζ) = C ζ
|ζ| . It suffices to show the multiplier of R

also commutes rotation.
Clearly R satisfies the conditions of theorem 4.16, with Ω = IdSn−1 . Therefore

the multiplier mR of R is given by the formula

(5.1) mR(x) =

∫
Sn−1

(
πi

2
sign(x · y)− log |x · y|

)
ydy

and hence mR commutes with rotation. In fact, evaluating (5.1) at a point gives

mR(ζ) = i ζ|ζ| . �

Application 5.6 (Lp estimate for elliptic operators). Suppose ∆u = f for f ∈ C1
c (

Rn). Then ‖u‖Ẇ 2,pRn ≤ C‖f‖LpR for 1 < p <∞.

Proof. It suffices to show ∥∥∥∥ ∂2

∂xi∂xj

∥∥∥∥
Lp
≤ C‖f‖Lp

Using that m(ζ) = |ζ|2 is the multiplier of ∆, we have

F(∂i∂ju)(ζ) = −4π2ζiζjFu(ζ)

= 4π2 iζi
|ζ|
iζj
|ζ|
|ζ|2Fu(ζ)

= −F(RiRj∆u)(ζ)

= −F(RiRjf)(ζ)

The result follows from the Lp bound of theorem 4.16. �

Application 5.7. If f ∈ C1
c (R2), then∥∥∥∥ ∂f∂x1

∥∥∥∥
Lp

+

∥∥∥∥ ∂f∂x2

∥∥∥∥
Lp
≤ Ap

∥∥∥∥ ∂f∂x1
+ i

∂f

∂x2

∥∥∥∥
Lp

for 1 < p <∞

Proof. Follows directly from the relation

∂f

∂xi
= −Ri(R1 − iR2)(

∂f

∂x1
+ i

∂f

∂x2
)

and the Lp bounds of theorem 4.16 �
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6. Poisson integral

Given f(x) ∈ L2(Rn), we want to find u(x, y), x ∈ Rn, y ∈ R, such that

(6.1)

{
∆Rn+1

+
u(x, y) = 0,

u(x, 0) = f(x).

Denoting by û(t, y) the partial Fourier transform of u in x, we obtain û(t, y) =

f̂(t)e−2π|t|y and thus

(6.2) u(x, y) =

∫
Rn
f̂(t)e−2π|t|ye−2πix·t dt.

That u satisfies the Poisson equation ∆u = 0 follows from

∆Rn+1
+

(e−2π|t|ye−2πix·t) = 0,

where ∆Rn+1
+

= ∂2

∂y2
+
∑n

i=1
∂2

∂x2i
. Moreover, u(x, 0) = f(x) holds for some classes

of f . As a simple example, suppose f ∈ L2(Rn), then u(x, y) → f(x) as y → 0 in
L2(Rn)-norm; indeed, by Plancherel,

‖u(x, y)− f(x)‖L2 = ‖û(t, y)− f̂(t)‖L2 = ‖f̂(t)(e−2π|t|y − 1)‖L2
y→0−−−→ 0

by the Dominated Convergence Theorem, since |e−2π|t|y − 1| ≤ 2 for y ≥ 0, and we

have pointwise convergence e−2π|t|y → 0 as y → 0. This holds more generally:

Theorem 6.1. In (6.1), suppose that f ∈ Lp(Rn), 1 ≤ p < ∞. Then for the
solution (6.2) of (6.1), we have u(x, y)→ f(x) in Lp(Rn)-norm.

We will deduce this from the following lemma:

Lemma 6.2. Let φ ∈ L1(Rn). Set ψ(x) = sup|y|≥|x| |φ(y)|, and suppose A :=∫
ψ(x) dx < ∞. Moreover, let φε(x) = ε−nφ(ε−1x). Let f ∈ Lp(Rn), 1 ≤ p < ∞.

Then:

(1) supε>0 |f ∗ φε|(x) ≤ AMf(x), where Mf is the maximal function of f .
(2) If

∫
Rn φ(x) dx = 1, then limε→0(f ∗ φε)(x) = f(x) a.e. x.

(3) If
∫
Rn φ(x) dx = 1, then ‖f ∗ φε − f‖Lp → 0 as ε→ 0.

Proof. We only prove the last part. One very easy way to proceed is to first show the
stated convergence for continuous, compactly supported f and then use a density
argument. Alternatively, observe that

‖f ∗ φε − f‖Lp =

∥∥∥∥∫ (f(x− y)− f(x)
)
φε(y) dy

∥∥∥∥
Lp
≤
∫
‖f(· − y)− f‖Lp |φε(y)| dy.

Now, given δ > 0, we will show that we can choose r > 0 such that for |y| ≤ r,
‖f(· − y)− f‖Lp < δ. But then

‖f ∗ φε − f‖Lp ≤
∫
|y|≤r

‖f(· − y)− f‖Lp |φε(y)| dy +

∫
|y|>r

‖f(· − y)− f‖Lp |φε(y)| dy

≤ δ‖φ‖L1 + 2‖f‖Lp
∫
|y|>rε−1

|φ(y)| dy < δ(1 + ‖φ‖L1)
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for sufficiently small ε > 0. Since δ > 0 was arbitrary, this proves the lemma.
To finish the proof, we show that for f ∈ Lp(Rn), 1 ≤ p < ∞, we have ∆(y) :=

‖f(· + y) − f‖Lp → 0 as y → 0. This is clearly true for continuous, compactly
supported f . For general f ∈ Lp(Rn), decompose f = f1+f2, where f1 is continuous
with compact support, f2 ∈ Lp(Rn), and ‖f2‖Lp < δ; then

∆(y) ≤ ‖f1(·+ y)− f1‖Lp + 2δ;

but the first summand on the right converges to 0 as y → 0, and we are done. �

Remark 6.3. The last part of the lemma is false for p = ∞: Indeed, taking f to
be the characteristic function of an interval and φ with compact support, it is easy
to see that ‖f ∗ φε − f‖L∞ = 1/2 for all sufficiently small ε > 0.

On the other hand, part (2) is true for p =∞. Indeed, it suffices to show that if
f ∈ L∞(Rn), then

lim
ε→0

(f ∗ φε)(x) = f(x)

a.e. x ∈ B, for every fixed compact ball B. To see this, let B1 ⊃ B be a strictly
bigger ball, and write f = f1 + f2 with

f1(x) =

{
f(x), x ∈ B1

0, x /∈ B1.

Then f1 ∈ Lp(Rn) for all 1 ≤ p ≤ ∞, so the statement holds for f1. For f2, we have

(f2 ∗ φε)(x) =

∫
f2(y)φε(x− y) dy,

and in the support of the integrand, y ∈ B1, thus for x ∈ B, we have |x− y| ≥ δ =
dist(B,B1); so for x ∈ B,

|(f2 ∗ φε)(x)| ≤ ‖f2‖L∞
∫
B1

|φε(x− y)| dy ≤ ‖f2‖L∞
∫
|y|>δ

|φε(y)| dy ε→0−−→ 0.

We can now prove Theorem 6.1.

Proof of Theorem 6.1. By (6.2), we have u(x, y) = (Py ∗ f)(x), where P̂y(t) =

e−2π|t|y. Computing the inverse Fourier transform gives

Py(x) =
cny

(|x|2 + |y|2)(n+1)/2
, cn =

Γ
(
n+1

2

)
π(n+1)/2

.

Notice that Py is homogeneous of degree −n with respect y, that is, Py(x) =
y−nP1(y−1x). Moreover, P1(x) is positive, decreasing in |x|, in Lp for 1 ≤ p ≤ ∞,

and
∫
Rn Py(x) dx = P̂y(0) = 1. Therefore, we can apply Lemma 6.2 with φ = ψ =

P1. �
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7. Spherical harmonics

Definition 7.1. Let Pk be the linear space of homogeneous polynomials of degree k
with complex coefficients in Rn. Let Hk be the subspace of harmonic homogeneous
degree k polynomials with complex coefficients.

We have natural orthogonality properties between Hj and Hk for j 6= k: Indeed,
if P (x) ∈ Hj , Q(x) ∈ Hk, then

(j − k)

∫
Sn−1

P (x)Q(x) dσ(x) =

∫
Sn−1

Q(x)
∂P

∂n
(x)− P (x)

∂Q

∂n
(x) dσ(x)

=

∫
|x|≤1

(Q∆P − P∆Q) dx = 0,

thus ∫
Sn−1

P (x)Q(x) dσ(x) = 0.

Lemma 7.2. Every P ∈ Pk can be uniquely written as P = P1 + |x|2P2, where
P1 ∈ Hk and P2 ∈ Pk−2.

Proof. Write P (x) =
∑
|α|=k aαx

α, where α = (α1, . . . , αn) is a multiindex, xα =∏
x
αj
j , |α| =

∑
αj . Define

P

(
∂

∂x

)
=
∑
|α|=k

aα

(
∂

∂x

)α
,

where
(
∂
∂x

)α
=

∂α1
∂x
α1
1

· · · ∂αn
∂xαnn

. Define an inner product on Pk by

〈P,Q〉 = P

(
∂

∂x

)
Q.

To see that this is indeed an inner product, notice that if P and Q are different
monomials, then 〈P,Q〉 = 〈Q,P 〉 = 0 in view of

(
∂
∂x

)α
xβ = 0 if α 6= β, and thus

〈P, P 〉 =
∑
|α|=k

|aα|2α!,

where α! =
∏
αj !. We now claim that |x|2Pk−2 is the orthogonal complement of

Hk with respect to this inner product, which would finish the proof. To show the
inclusion Hk ∈ (|x|2Pk−2)⊥, observe that for all Q ∈ Hk, P ∈ Pk−2, we have

〈|x|2P,Q〉 = 〈P,∆Q〉 = 0.

For the converse inclusion, suppose P1 ∈ (|x|2Pk−2)⊥, then

〈|x|2P2, P1〉 = 0 ∀P2 ∈ Pk−2,

so 〈P2,∆P1〉 = 0 for all P2 ∈ Pk−2. Choosing P2 = ∆P1 gives 〈∆P1,∆P1〉 = 0, and
since 〈·, ·〉 is an inner product, ∆P1 = 0, as was to be shown. �
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Iterating this, we can decompose any polynomial P ∈ Pk as a finite sum P =
P1 + |x|2P2 + |x|4P3 + · · · with Pj ∈ Hk−2(j−1); restricting to Sn−1, this gives
P = P1 + P2 + P3 + · · · .

Definition 7.3. Define Hk to be the linear space of restrictions of function in Hk
to Sn−1.

Relative to the standard inner product on L2(Sn−1), we have Hj ⊥ Hk for j 6= k.
Moreover,

∑∞
k=0Hk is dense in L2(Sn−1); indeed, polynomials in Rn are dense in

C(B1) by Stone-Weierstraß, thus the space of restrictions of polynomials to Sn−1

is dense in C(Sn−1), which in turn is dense in L2(Sn−1); but every polynomial is
the sum of homogeneous polynomials, which, whose restrictions to Sn−1 are in turn
sums of restrictions of harmonic polynomials to Sn−1. In summary:

Theorem 7.4. The inclusions Hk ↪→ L2(Sn−1), k = 0, 1, 2, . . ., induce an isometric
isomorphism L2(Sn−1) ∼=

⊕∞
k=0Hk.

Thus, for all f ∈ L2(Sn−1), we can find {Yk}∞k=0 such that

f =

∞∑
k=0

Yk =

∞∑
k=0

akY
0
k ,

with convergence in L2(Sn−1), where Yk, Y
0
k ∈ Hk, ‖Y 0

k ‖L2(Sn−1) = 1, and

‖f‖L2(Sn−1) =

∞∑
k=0

∫
Sn−1

|Yk|2 dσ =

∞∑
k=0

|ak|2.

Also note that since H0 consists of constant functions,
∫
Sn−1 Yk dσ = 0 for k 6= 0 by

the orthogonality of H0 and Hk; thus

Y0 =
1

vol(Sn−1)

∫
Sn−1

f(x) dσ(x).

The Yk and Y 0
k are eigenfunctions of ∆Sn−1 ; more precisely:

Proposition 7.5. If Yk ∈ Hk, then ∆Sn−1Yk = −k(k + n− 2)Yk.

Proof. Since

∆Rn =
∂2

∂r2
+
n− 1

r

∂

∂r
+

1

r2
∆Sn−1 ,

we see that ∆Sn−1Yk equals the restriction to Sn−1 of ∆Rn acting on the homogeneous
degree 0 extension of Yk, which is equal to |x|−kPk(x) for some Pk ∈ Hk. Therefore,

∆Sn−1Yk = (∆RnPk)|x|−k + Pk(∆Rn |x|−k) + 2

n∑
j=1

∂

∂xj
(|x|−k) ∂

∂xj
Pk(x).

The first summand vanishes since Pk is harmonic on Rn; for the second summand,
we compute

∆Rn |x|−k = (k(k + 1)− (n− 1)k)|x− 2|−k = k(k − n+ 2)|x|−k−2,
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and for the third summand, we compute ∂
∂xj
|x|−k = −kxj |x|−k−2 and

n∑
j=1

xj
∂

∂xj
Pk(x) = kPk(x)

by homogeneity. Thus, at |x| = 1, using Pk|Sn−1 = Yk,

∆Sn−1Yk = (k(k − n+ 2)− 2k2)Yk = −k(k + n− 2)Yk. �

The expansion of f =
∑∞

k=0 akY
0
k , ‖Y 0

k ‖L2 = 1, as above, into spherical harmonics
is very similar to the Fourier decomposition of functions on the circle. As an example,
we have:

Lemma 7.6. The function f =
∑∞

k=0 akY
0
k is C∞ if and only if for all N , there

exists a constant Cn such that |ak| ≤ CNk−N .

Proof. If f ∈ C∞, then for all r ∈ N, we can integrate by parts to obtain∫
(∆rf)Y 0

k dσ = ak(−k(k + n− 2))r.

But by Cauchy-Schwarz, the left hand side is uniformly bounded in k, hence ak =
O(k−2r) for all r ∈ N. Conversely, ak = O(k−N ) for all N implies ∆rf ∈ L2 for all
r ∈ N. By elliptic regularity, this implies f ∈ C∞. �

Next, we use spherical harmonics to generalize the Riesz transform.

Lemma 7.7. Let Pk ∈ Hk. Then

F (Pk(x)e−π|x|
2
) = ikPk(x)e−π|x|

2
.

Proof. For fixed t ∈ Rn, we have∫
Rn
e−π|x|

2
Pk(x+ t) dx =

∫ ∞
0

rn−1e−πr
2

∫
Sn−1

Pk(t+ rω) dω dr.

Since Pk is harmonic, the inner integral equals ωn−1Pk(t), where ωn−1 is the area of
Sn−1, hence ∫

Rn
e−π|x|

2
Pk(x+ t) dx = Pk(t)

∫
e−π|x|

2
dx = Pk(t).

Both sides of this equation are entire in t, hence for y ∈ Rn,∫
Rn
e−π|x|

2
Pk(x− iy) dx = Pk(−iy) = (−i)kPk(y).

Changing variables to x − iy in the integral and using Cauchy’s Theorem to shift
the contour of integration back to Rn again gives

(−i)kPk(y) =

∫
Rn
e−π|x|

2+π|y|2−2πix·yPk(x) dx,

which upon multiplication by e−π|y|
2

and changing the integration variable to −x,
thereby picking up an additional factor of (−1)k from the homogeneity of Pk, proves
the result. �
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Corollary 7.8. Fix a nonzero Pk ∈ Hk. For radial functions f(x) = f(|x|)
with Pk(x)f(r) ∈ L2(Rn), the Fourier transform of Pk(x)f(r) is also of the form
Pk(x)g(r) with g radial, and the map Fn,k defined by Fn,k(f) = g essentially only
depends on n+ 2k (but not on Pk), more precisely,

Fn,k = ikFn+2k,0.

Proof. By the lemma, we know that if f = e−π|x|
2
, then the statement is true. Next,

if f(r) = e−πδr
2

with δ > 0, we compute

F (Pk(x)e−πδr
2
) = δ−k/2F (Pk(δ

1/2x)e−πδr
2
) = δ−k/2δ−n/2F (Pk(·)e−π|·|

2
)
( x

δ1/2

)
= δ−k/2δ−n/2ikPk

( x

δ1/2

)
e−πx

2/δ = δ−kδ−n/2ikPk(x)e−πx
2/δ,

thus
Fn,k(e

−πδr2) = ikδ−k−n/2e−πr
2/δ,

which implies

Fn,k(e
−πδr2) = ikFn+2k,0(e−πδr

2
).

This implies the lemma for all f which are in the closure of the span of {e−πδr2}δ>0

in the Hilbert space

L2((0,∞), r2k+n−1dr) =

{
f(r)

∣∣∣∣ ∫ ∞
0
|f(r)|2r2k+n−1 dr <∞

}
,

which is precisely the space of all radial functions f for which Pk(x)f(r) ∈ L2(Rn).

But it is in fact easy to see that the span of {e−πδr2}δ>0 is dense in L2((0,∞), r2k+n−1dr):
Indeed, if f ∈ L2((0,∞), r2k+n−1dr) is such that∫ ∞

0
f(r)e−πδr

2
r2k+n−1 dr = 0 ∀δ > 0,

then a change of variables shows that the Laplace transform of f(
√
r)r(2k+n−2)/2 ∈

L1((0,∞), dr) is 0, thus f ≡ 0. �

We now generalize the Riesz transform:

Theorem 7.9. Let Pk ∈ Hk(Rn), k ≥ 1. Then the multiplier of the kernel
|x|−n−kPk(x) (in the sense of taking the principal value) is γk|x|−kPk, where

γk =
ikπn/2Γ

(
k
2

)
Γ
(
k+n

2

) .

We will use an approximation argument.

Lemma 7.10. For 0 < α < n, k ≥ 0, we have

(7.1) F

(
Pk(x)

|x|n+k−α

)
= γk,α

Pk(x)

|x|k+α
,

in the sense that ∫
Rn

Pk(x)

|x|n+k−α φ̂(x) dx = γk,α

∫
Rn

Pk(x)

|x|k+α
φ(x) dx
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for φ ∈ C∞c (Rn). Here

γk,α =
ikπn/2−αΓ

(
k+α

2

)
Γ
(
k+n−α

2

) .

Proof. Since F (Pk(x)e−πδ|x|
2
) = ikδ−k−n/2e−π|x|

2/δPk(x), we have∫
Rn
Pk(x)e−πδ|x|

2
φ̂(x) dx = ikδ−k−n/2

∫
Rn
Pk(x)e−π|x|

2/δφ(x) dx.

If we multiply both sides by δ(k+n−α)/2−1 and integrate with respect to δ from 0 to
∞, the left hand side becomes∫

Pk(x)φ̂(x)

|x|k+n−α dx · Γ
(
k + n− α

2

)
π−(k+n−α)/2,

where we uesd
∫∞

0 e−πδ|x|
2
δβ−1 dδ = (π|x|2)−βΓ(β), and the right hand side becomes

ikΓ

(
k + α

2

)
π−(k+α)/2

∫
Rn

Pk(x)φ(x)

|x|k+α
dx. �

Proof of Theorem 7.9. We want to take α → 0 in the previous Lemma. For φ ∈
C∞c (Rn), we can take the limit α → 0 in the right hand side of (7.1) directly,
obtaining

lim
α→0+

∫
Rn

Pk(x)

|x|k+α
φ(x) dx =

∫
Rn

Pk(x)

|x|k
φ(x) dx.

For the left hand side, we split the integral, writing∫
Rn

Pk(x)

|x|n+k−α φ̂(x) dx =

∫
|x|≤1

Pk(x)

|x|n+k−α φ̂(x) dx+

∫
|x|>1

Pk(x)

|x|n+k−α φ̂(x) dx.

In the second integral, we can take the limit α→ 0+ directly. To deal with the first
term, we use the cancellation property∫

r<|x|<R

Pk(x)

|x|n+k−α dx = 0

for all 0 < r < R, which follows from the fact that the integral of Pk over any
coordinate sphere vanishes in view of k ≥ 1, to rewrite the first integral as∫

|x|≤1

Pk(x)

|x|n+k−α

(
φ̂(x)− φ̂(0)

)
dx

α→0−−−→
∫
|x|≤1

Pk(x)

|x|n+k

(
φ̂(x)− φ̂(0)

)
dx,

where the integrand is now integrable, since φ̂(x)− φ̂(0) = O(x). The last integral
in turn can be rewritten as∫

|x|≤1

Pk(x)

|x|n+k

(
φ̂(x)− φ̂(0)

)
dx = lim

ε→0+

∫
ε≤|x|≤1

Pk(x)

|x|n+k

(
φ̂(x)− φ̂(0)

)
dx

= lim
ε→0+

∫
ε≤|x|≤1

Pk(x)

|x|n+k
φ̂(x) dx.
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Thus,

lim
ε→0+

∫
|x|≥ε

Pk(x)

|x|n+k
φ̂(x) dx = γk

∫
Rn

Pk(x)

|x|k
φ(x) dx,

where γk = γk,0. Now, taking φ̂(x) = f(y − x), thus φ(x) = f̂(x)e−2πix·y, we obtain

Tf(y) := lim
ε→0+

∫
|x|≥ε

Pk(x)

|x|n+k
f(y − x) dx = γk

∫
Pk(x)

|x|k
f̂(x)e−2πix·y dx;

but the multiplier of T is, by definition, the function m with T̂ f = mf̂ , i.e.

Tf(y) =

∫
m(x)f̂(x)e−2πix·y dx,

and we can therefore read of m(x) = γk
Pk(x)
|x|k , finishing the proof. �

Theorem 7.11. The following two classes of transforms on L2(Rn) are identical:

(1) Tf = cf + limε→0

∫
|y|≥ε

Ω(y)
|y|n f(x − y) dy, where Ω is homogeneous of degree

0,
∫
Sn−1 Ω dσ = 0, and Ω ∈ C∞(Sn−1),

(2) T̂ f = mf̂ , where m is homogeneous of degree 0, and m ∈ C∞(Sn−1).

Proof. Use Ω(x) =
∑∞

k=1 Yk, with the Y0-term absent because of
∫
Sn−1 Ω dσ = 0,

and m(x) =
∑∞

k=0 Ỹk, and the previous theorem, which in fact gives Ỹk = γkYk. �

As an application of 7.11, let’s consider linear elliptic operators. Suppose P is a
homogeneous degree k polynomial. P is said to be elliptic if p(x) 6= 0, ∀x 6= 0.

Theorem 7.12. Let P be as above and assume that f ∈ Ckc . Then

‖
(
∂

∂x

)α
f‖Lp ≤ Cp‖P (

∂

∂x
)f‖Lp , ∀|α| = k, 1 < p <∞

Proof. Given |α| = k, define m(y) = yα

p(y) and let T be the operator with multiplier

m. Then T has the nice property that

(
∂

∂x
)αf = T (P (

∂

∂x
)f)

Now since m is smooth on Sn−1 and homogeneous of degree 0, by 7.11 and the
theory of singular integrals developed earlier, we have

‖( ∂
∂x

)αf‖Lp ≤ Cp‖P (
∂

∂x
)f‖Lp

�
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8. Littlewood-Paley Theory

Let f ∈ Lp and let

u(x, y) =

∫
Rn
f(x− t)Py(t)dt, x ∈ Rn, y ∈ R+

be it’s Poisson integral. We let ∇x = ( ∂
∂x1

, · · · , ∂
∂xn

) and let ∇ denote the gradient
in both x and y.

Definition 8.1 (g-function). For f ∈ Lp, define

g(f)(x) = (

∫ ∞
0
|∇u(x, y)|2ydy)1/2,

g1(f)(x) = (

∫ ∞
0
| ∂
∂y
u(x, y)|2ydy)1/2,

g2(f)(x) = (

∫ ∞
0
|∇xu(x, y)|2ydy)1/2,

Note that g2
1 + g2

2 = g2.

It turns out that the Lp-norm of g(f) is comparable to that of f itself. More
precisely, we have the following result:

Theorem 8.2. Let f ∈ Lp(Rn) where p ∈ (1,∞). Then g(f) ∈ Lp(Rn). Moreover,

(8.1) Ãp‖f‖Lp ≤ ‖g(f)‖Lp ≤ Ap‖f‖Lp

Proof. First we notice that the case p = 2 follows from Plancherel’s identity. Indeed,
we can write

u(x, y) =

∫
Rn
f̂(t)e−2π|t|ye−2πix·tdt

∂u

∂y
(x, y) =

∫
Rn

(−2π|t|)f̂(t)e−2π|t|ye−2πix·tdt

∂u

∂xi
=

∫
Rn

(−2πiti)f̂(t)e−2π|t|ye−2πix·tdt

So by Plancherel’s identity,∫
Rn
|∂u
∂y

(x, y)|2dx =

∫
Rn

4π2|t|2|f̂(t)|2e−4π|t|dt =

∫
Rn
|∇xu(x, y)|2dx

Therefore the L2-norm of g1(f) is given by

‖g1(f)‖2L2 =

∫
Rn

∫ ∞
0
|∂u(x, y)

∂y
|2ydydt

=

∫ ∞
0

∫
Rn
y4π2|t|2e−4π|t|y|f̂(t)|2dtdy

=

∫
Rn
|f̂(t)|2

[
4π2|t|2

∫ ∞
0

e−4π|t|yydy

]
dt
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=

∫
Rn
|f̂(t)|2

[
1

4

∫ ∞
0

e−zzdz

]
dt

=
1

4
‖f‖2L2

Similarly, we can show that

‖g2(f)‖2L2 =
1

4
‖f‖2L2

Hence, using the relation g2
1 + g2

2 = g2, we have

‖g(f)‖2L2 =
1

2
‖f‖2L2 .

For general p, we will apply the vector-valued version of sigular integral theory
developed earlier. Define the following two Hilbert spaces:

H1 = C; H2 = {(f0, f1, · · · , fn)|fi ∈ H0
2}

H0
2 = {f |

∫ ∞
0
|f |2ydy <∞}

Then since H1 = C, the space of bounded linear transforms B(H1,H2) is isomorphic
to H2 itself.

Next we define the kernel Kε:

Kε(x) = (
∂Py+ε

∂y
,
∂Py+ε

∂x1
, · · · , ∂Py+ε

∂xn
)

and let Tεf(x) =
∫
Rn Kε(t)f(x− t)dt. We want to verify the following properties of

Kε in order to apply singular integral theory:

(1) Kε(x) takes value in H2 = B(H1,H2).
(2) Kε ∈ L2(Rn,H2)

(3) |∂Kε

∂xi
| ≤ A|x|−n−1

(4) |K̂ε(t)| ≤ 1/
√

2

Recalling the definition of the Poisson kernel

Py(x) =
cny

(|x|2 + y2)n+1/2

So it’s not hard to check that ∫ ∞
0
|∂Py+ε

∂y
|2ydy < 0∫ ∞

0
|∂Py+ε

∂xi
|2ydy < 0

This establishes property (1).
Next we check property (2). Note that

|Kε(x)|2H2
=

∫ ∞
0

[
|∂Py+ε

∂y
|2 + |∇xPy+ε|2

]
ydy ≤ c

∫ ∞
0

ydy

(|x|2 + |y + ε|2)n+1
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≤


∫ ∞

0

ydy

|y + ε|2(n+1)
= O(ε−2n)

C|x|−2n

Therefore Kε ∈ L2(Rn,H2).
Property (3) can be verified by a direct computation. Finally, notice that

|Tεf(x)|2H2
=

∫ ∞
0
|∇u(x, y + ε)|2ydy ≤ g(f)(x)2

So we have, for each f in L2(Rn),

‖Tεf‖L2(R,H2) ≤ ‖g(f)‖L2 =
1√
2
‖f‖L2 .

This gives a L∞-bound on the multiplier K̂ε and establishes (4), i.e.

‖K̂ε(t)‖ ≤
1√
2
.

Therefore we can apply the vector-valued version of 4.10 and get

‖Tεf‖Lp(Rn,H2) ≤ Ap‖f‖Lp , 1 < p <∞

Now since lim
ε→0
∇u(x, y + ε) = ∇u(x, y) for all y > 0, by Fatou’s lemma we have

g(f)(x)2 =

∫ ∞
0
|∇u(x, y)|2ydy ≤ lim inf

ε→0
|Tεf(x)|2H2

Therefore, using Fatou’s lemma again, we get, for 1 < p <∞,

(8.2) ‖g(f)‖Lp ≤ lim inf
ε→0

‖Tεf‖Lp(R,H2) ≤ Ap‖f‖Lp

Hence we’ve proved the second inequality in (8.1). Finally we’ll use a duality argu-
ment to establish the first inequality there.

Recall that

‖g(f)‖2L2 =
1

2
‖f‖2L2

Polarizing this equality gives

1

2

∫
Rn
f1(x)f2(x)dx =

∫ ∞
0

∫
Rn
∇u1(x, y)∇u2(x, y)ydydx

Hence if we let q = p
p−1 be the dual exponent of p and take f1 ∈ L2(Rn) ∩ Lp(Rn),

f2 ∈ L2(Rn) ∩ Lq(Rn) with ‖f2‖Lq = 1, then

1

2
|
∫
Rn
f1(x)f2(x)dx| ≤

∫
Rn
g(f1)g(f2)dx (Hölder)

≤ ‖g(f1)‖Lp‖g(f2)‖Lq (Hölder again)

≤ ‖g(f1)‖LpAq‖f2‖Lq (by (8.2))

= Aq‖g(f1)‖Lp
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Therefore we get
‖f1‖Lp ≤ Aq‖g(f1)‖Lp

This establishes the first inequality of (8.1). �

Remark 8.3. We can define higher-order analogues of the g-function by considering

gk(f) =

[∫ ∞
0
|∂
ku

∂yk
(x, y)2|y2k−1dy

]1/2

Then we get gk+1(f) ≥ ckgk(f) and that ‖gk(f)‖Lp is comparable to ‖f‖Lp for k ≥ 1.

Next we consider another function related to the g-function.

Definition 8.4 (g∗λ-function). Given f ∈ Lp, let u denote it’s Poisson integral, we
define

(8.3) g∗λ(f)(x) =

[∫ ∞
0

∫
Rn

(
y

|t|+ y

)λn
|∇u(x− t, y)|2y1−ndtdy

]1/2

(8.4) S(f)(x) =

[∫
Γ
|∇u(x− t, y)|2y1−ndtdy

]1/2

where Γ is given by
Γ = {(t, y) ∈ Rn+1

+ ||t| < y}

Theorem 8.5. We have the following pointwise bounds:

(8.5) g(f)(x) ≤ CS(f)(x) ≤ Cλg∗λ(f)(x)

Proof. We first prove the second inequality in (8.5). This follows from the observa-
tion that over Γ, (

y

|t|+ y

)λn
≥
(

1

2

)λn
Recalling the definitions (8.3) and (8.4), we get

S(f)(x) ≤ Cλ,ng∗λ(f)(x).

Next we prove the first inequality in (8.5). Given y > 0, we define

By = The ball centered at (0, y) touching Γ

Since ∇u is harmonic, by the mean-value property,

(8.6) ∇u(0, y) =
1

m(By)

∫
By

∇u(x, t)dxdt ≤

(
1

m(By)

∫
By

|∇u(x, t)|2dxdt

)1/2

Therefore we have

g(f)(0)2 =

∫ ∞
0

y|∇u(y, 0)|2dy

≤
∫ ∞

0
y

1

m(By)

∫
By

|∇u(x, t)|2dxdtdy (by (8.6))



WANG - MATH 258 - HARM. ANALYSIS AND ISOP. INEQ. - LECTURE NOTES 35

≤
∫ ∞

0
cy−n

∫
By

|∇u(x, t)|2dxdtdy

To continue, note that there exist constants c1 and c2 such that

(x, t) ∈ By ⇒ c1t ≤ y ≤ c2t

Thus

g(f)(0)2 ≤
∫ ∞

0
cy−n

∫
By

|∇u(x, t)|2dxdtdy

≤
∫

Γ

[∫ c2t

c1t
y−ndy

]
|∇u(x, t)|2dxdt

≤ c
∫

Γ
t1−n|∇u(x, t)|2dxdt

= cS(f)(0)2

Finally note that for all x ∈ Rn,

S(f)(x) =

∫
Γ
|∇u(x− t, y)|2y1−ndtdy =

∫
Γ(x)
|∇u(t, y)|2y1−ndtdy

where Γ(x) = x + Γ is a shifted cone. Thus if we consider Γ(x) instead of Γ in the
above argument, we would get

g(f)(x) ≤ cS(f)(x)

this proves the first inequality in (8.5) �

As is the case for the g-function, we can compare the Lp-norm of g∗λ with that of
f . Specifically, we have the following result:

Theorem 8.6. Let f ∈ Lp(1 < p <∞) and suppose that λ > 1 and p > 2/λ. Then

(8.7) ‖g∗λ‖Lp ≤ Cp,λ‖f‖Lp

Proof. We first do the easier case where p ≥ 2.

Claim 8.7. For any nonnegative function ψ the following holds:

(8.8)

∫
Rn
g∗λ(f)(x)2ψ(x)dx ≤

∫
Rn
g(f)(x)2Mψ(x)dx

Proof of claim. To see this, note that the left-hand side equals∫
Rn
ψ(x)

[∫
Rn

∫ ∞
0
|∇u(x− t, y)|2

(
y

|t|+ y

)λn
y1−ndtdy

]
dx

=

∫
Rn

∫ ∞
0

y|∇u(t, y)|2
[∫

Rn
ψ(x)

(
y

|t− x|+ y

)λn
y−ndx

]
dtdy

≤ Cn,λ
∫
Rn
g(f)(t)2Mψ(t)dt (by 1.5 and λ > 1)
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This proves the claim. Note that we need λ > 1 so that (1+|x|)−λn is integrable. �

If we plug ψ = 1 into (8.8), then we get (8.7) for p = 2. When 2 < p < ∞, let q
be the dual exponent of p/2, so that 1 < q <∞. Then

sup
‖ψ‖Lq=1

∫
Rn
g∗λ(f)(x)2ψ(x)dx ≤ sup

‖ψ‖Lq=1

∫
Rn
g(f)(x)2Mψ(x)dx

≤ ‖g(f)‖2Lp‖Mψ‖Lq

≤ A‖f‖2Lp‖ψ‖Lq = A‖f‖2Lp(by 8.1 and 1.6)

Hence

‖g∗λ‖2Lp ≤ A‖f‖2Lp
and we’ve established (8.7) for p ≥ 2, λ > 1.

To finish the proof in the general case, we will need the following lemmas and
definition:

Lemma 8.8. If u is a harmonic function, then

∆(up) = p(p− 1)up−2|∇u|2.

Lemma 8.9. If F (x, y) is continuous on Rn+1
+ and decays “suitably fast” at ∞, and

is C2 on Rn+1
+ , then ∫

Rn+1
+

y∆F (x, y)dxdy =

∫
Rn
F (x, 0)dx.

For example, the decay conditions |F (x, y)| = O((|x| + |y|)−n−ε) and |∇F (x, y)| =
O((|x|+ |y|)−n−1−ε) are “suitably fast.”

Definition 8.10. We define the weighted maximal function

Mµ(f)(x) = sup
r>0

(
1

|B(x, r)|

∫
B(x,r)

|f |µ(y)dy

) 1
µ

Lemma 8.11. For f ∈ Lp(Rn), p ≥ µ ≥ 1, let u(x, y) denote the Poisson integral
of f . Then

(1) |u(x− t, y)| ≤ A
(

1 + |t|
y

)n
M(f)(x)

(2) |u(x− t, y)| ≤ Aµ
(

1 + |t|
y

)n
µ
Mµ(f)(x)

Proof. As the statement is invariant under scaling (x, y, t) 7→ (λx, λy, λz), it suffices
to prove the lemma for y = 1. Note that

|u(x− t, 1)| = |f ∗ P1(x− t)| ≤ AtM(f)(x),

where At is the L1-integral of the “dominant function” of the Poisson kernel, i.e..

ψt(x) := cn sup
|x′|≥|x|

1

(1 + |x′ − t|)
n+1
2

.
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Because |ψt| ≤ C for |x| ≤ 2|t| and |ψt| ≤ A(1 + |x|2)−
n+1
2 for |x| > 2|t|, we see that

At =

∫
x∈Rn

ψt(x)dx ≤ O((1 + |t|)n).

This proves (1). For (2), Hölder’s inequality (and
∫
Rn Py(s)ds = 1) implies that

|u(x− t, y)|µ =

(∫
s∈Rn

Py(s)f(x− t− s)ds
)µ
≤
∫
s∈Rn

|f |µ(x− t− s)Py(s)ds.

We will treat the right hand side as the Poisson integral of |f |µ and call it U(x, y).
By (1) applied to U(x, y), we obtain

|u(x− t, y)| ≤ |U(x− t, y)|
1
µ

≤ A
1
µ

(
1 +
|t|
y

)n
µ

M(|f |µ)(x)
1
µ

= Aµ

(
1 +
|t|
y

)n
µ

Mµ(f)(x). �

Now, we can finish the proof of the theorem. For 1 < p < 2 and λ > 2
p , choose

1 ≤ µ < p so that

λ′ := λ− 2− p
µ

> 1.

By Lemma 8.11,

|u(x− t, y)| ≤ C
(

1 +
|t|
y

)n
µ

Mµ(f)(x).

Using this and Lemmas 8.8 and 8.9, we obtain

(g∗λ(f))2(x) =

∫ ∞
0

∫
t∈Rn

y1−n
(

y

y + |t|

)λn
|∇u(x− t, y)|2dtdy

=
1

p(p− 1)

∫
Rn+1
+

y1−n
(

y

y + |t|

)λn
u2−p(x− t, y)∆(up)(x− t, y)dtdy

≤ Aµ,pMµ(f)(x)2−p
∫

(t,y)∈Rn+1
+

y1−n
(

y

y + |t|

)λ′n
∆(up)(x− t, y)dtdy︸ ︷︷ ︸

:=I∗(x)

.

Note that∫
x∈Rn

I∗(x)dx =

∫
Rn+1
+

∫
x∈Rn

y1−n
(

y

y + |t|

)λ′n
∆(up)(t, y)dxdtdy

= Cλ′,n

∫
Rn+1

y∆(up)(t, y)dtdy

= Cλ′,nu
p(t, 0)dt

= Cλ′,n‖f‖pLp
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The first equality follows from a shift in x and the second follows from the fact that∫
x∈Rn

y−n
(

y

y + |t− x|

)λ′n
dx = Cλ′,n

by a change of variables. Using this, we have∫
x∈Rn

|g∗λ(f)|p(x)dx ≤
∫
x∈Rn

A
2
p
µ,pMµ(f)

2−p
2
p(x)I∗(x)

p
2 dx

≤ Aµ,p
(∫

x∈Rn
Mµ(f)(x)p

) 2−p
2

dx

(∫
x∈Rn

I∗(x)dx

) p
2

≤ Aµ,p‖f‖
2−p
2
p

Lp ‖f‖
p p
2

Lp

= Aµ,p‖f‖pLp ,

which finishes the proof. �

Theorem 8.12. If m(x) is Ck on Rn \ {0} for some k > n
2 . Assume that for every

multi-index α, we have that ∣∣∣∣( ∂

∂x

)α
m(x)

∣∣∣∣ ≤ B|x|−α.
Then, the associated operator satisfies ‖Tmf‖Lp ≤ Ap‖f‖Lp for all f ∈ L2 ∩ Lp.

Example 8.13. If m(x) is homogeneous of degree 0 and C∞ on the sphere, then it
defines a bounded operator Tm : Lp → Lp.

Proposition 8.14. Under the same assumptions on m(x) as in Theorem 8.12, if
f ∈ L2(Rn) and F (x) := Tmf , then

g1(F )(x) ≤ Bλg∗λ(f)(x),

where λ = 2n
k .

This proposition implies the theorem, because if p ≥ 2, then λ > 1.

‖Tmf‖Lp ≤ ‖g1(F )‖Lp ≤ Bλ‖g∗λ(f)‖Lp

(recall that g1(f) =
(∫∞

0 |
∂
∂yu(x, y)|2ydy

) 1
2
). If 1 < p < 2, then we might not have

p > 2
λ . However, we can reduce this case to the previous one by duality. Now, we

prove the proposition.

Proof. We set

û(x, y) := e−2π|x|yf̂(x)

Û(x, y) := e−2π|x|ym(x)f̂(x).

Here, both Fourier transforms are in the x variable only. Let

M(x, y) :=

∫
e−2πix·te−2π|t|ym(t)dt.
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Then,

Û(x, y1 + y2) = M̂(x, y1)û(x, y2),

for y = y1 + y2. In particular,

U(x, y1 + y2) =

∫
t∈Rn

M(t, y1)u(x− t, y2)dt.

Differentiating with respect to y1, k-times, and y2 once, we have that

U (k+1)(x, y) =

∫
t∈Rn

M (k)(t, y1)u1(x− t, y2)dt.

Letting y1 = y2 = y
2 , we have

U (k+1)(x, y) =

∫
t∈Rn

M (k)(t,
y

2
)u1(x− t, y

2
)dt.

The definition of M and decay properties of m(x) imply that

|M (k)(t, y)| ≤ B′|y|−n−k

‖tαM (k)(t, y)‖2L2 ≤ B′′y−n

for |α| ≤ k. Using this,

|U (k+1)(x, y)|

≤ A|y|−n−2k

∫
|t|≤ y

2

|u(1)(x− t, y
2

)|2dt︸ ︷︷ ︸
:=I1(y)

+A|y|−n
∫
|t|> y

2

|u(1)(x− t, y2 )|2

|t|2k
dt︸ ︷︷ ︸

:=I2(y)

,

which implies that

(g1(F )(x))2 = (gk+1(F )(x))2

=

∫ ∞
0

U (k+1)(x, y)2y2k+1dy

≤
∫ ∞

0
I1(y)y2k+1dy +

∫ ∞
0

I2(y)y2k+1dy

≤ B
∫
|∇u(x− t, y)|2y1−ndtdy +B′′(g∗λ(f))2

≤ BS(f)(x)2 +B′′(g∗λ(f))2

≤ B̃(g∗λ(f))2.

The middle inequality follows from the form of g∗λ and I2(y). This completes the
proof. �
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9. Partial sum operators

A key application of the Littlewood-Paley theory are dyadic decompositions.
Those in turn use partial sum operators, which we describe in this section.

Definition 9.1. If ρ ⊂ Rn is a rectangle whose sides are parallel to the axes, we
define the operator Sρ : L2(Rn)→ L2(Rn) implicitly by

Ŝρf = 1ρf̂ .

This operator is certainly bounded on L2 by Plancherel’s theorem, but in fact we
can extend this to the Lp setting.

Theorem 9.2. If f ∈ L2∩Lp, 1 < p <∞, and ρ ⊂ Rn is a rectangle as above, then

‖Sρf‖Lp ≤ Ap ‖f‖Lp

with Ap independent of ρ.

We will actually prove a stronger theorem:

Theorem 9.3. Let H be the space of `2 summable complex sequences, and let R =
{ρj}∞j=1 be an arbitrary sequence of rectangles in Rn whose sides are parallel to the

axes. For f ∈ L2(Rn,H) define

SR(f) = (Sρ1(f1), Sρ2(f2), . . .).

If 1 < p <∞ and f ∈ L2 ∩ Lp(Rn,H), then

‖SR(f)‖Lp ≤ Ap ‖f‖Lp.

Sketch of proof. There are four main steps in the proof.
Step 1. We prove the theorem under the assumption n = 1 and that each ρj is

the same interval (−∞, 0). Recall the Hilbert transform

Hf =
1

π
lim
ε↓0

∫
|y|≥ε

f(x− y)

y
dy,

whose multiplier is mH(x) = i signx. Then Id +iH
2 has multiplier 1(−∞,0), so

S(−∞,0) = Id +iH
2 . The claim will follow from the following claim:

Claim. Let f = (f1, f2, . . .) ∈ L2∩Lp(Rn,H), and set H̃f(x) = (Hf1(x), Hf2(x), . . .).

Then ‖H̃f‖Lp ≤ Ap ‖f‖Lp.

Proof of claim. If K(x) = Id`2
1
πx , then H̃f = K ∗ f . On the other hand K(x)

satisfies the Lp theory of singular integrals that we have already discussed. �

Step 2. We now relax the assumption that all the rectangles be (−∞, 0), and
instead require that they be ρi = (−∞, ai) for i = 1, 2, . . . Then the theorem easily
follows from step 1, provided we know how to handle shifts from (−∞, a) to (−∞, 0).
Indeed,

̂f(x)e−2πxa(ξ) = f̂(ξ − a).
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Step 3. For arbitrary dimensions n ≥ 1 we begin by assuming that the ρi are
halfspaces, ρi = {x ∈ Rn : x1 < ai}. The thing to note is that the indicator
function really acts on one coordinate so we can effectively try to reduce to the
one-dimensional case.

Let S
(1)
(−∞,ai) denote the operator on L2(Rn) acting only on the x1 variable, i.e.

S
(1)
(−∞,ai)f(x1, . . . , xn) =

∫
R
f̂ ξ1(ξ1, x2, . . . , xn) 1(−∞,ai)(ξ1) e−2πix1ξ1 dξ1.

We claim that S
(1)
(−∞,ai) = Sρi for all i, f ∈ L2. This is obvious when f decomposes

as f(x1, x2, . . . , xn) = g(x1)h(x2, . . . , xn), or when it is a linear combination of such
things. On the other hand those functions span a dense subset of L2, so by continuity
and step 2 we can conclude ‖SRf‖Lp ≤ Ap ‖f‖Lp .

Step 4. The general case, with arbitrary n and arbitrary rectangles. This actually
follows immediately from step 3, since every rectangle in Rn that we consider is the
intersection of 2n halfspaces. Apply step 3 a total of 2n times. �

Remark 9.4. One may naturally wonder whether the same result holds true when
rectangles are replaced by other simple objects in Rn. Charles Fefferman notoriously
constructed a counterexample to the assertion when the cutoff function is a disk
instead of a rectangle [?]. More precisely,

T̂ f = 1B f̂

does not define a bounded operator T : Lp(Rn)→ Lp(Rn), unless p = 2 or n = 1.

10. Dyadic decomposition

Definition 10.1. We define the dyadic decomposition of R to be

R = {0} ∪

(⋃
k∈Z

[2k, 2k+1]

)
∪

(⋃
k∈Z

[−2k+1,−2k]

)
.

The collection of intervals [2k, 2k+1], [−2k+1,−2k] above is called ∆ (or ∆1 when
highlighting the dimension).

Correspondingly we can decompose Rn in a similar way by first decomposing our
axes as described, and then considering the rectangles that form. The corresponding
collection ∆ (or ∆n) then consists of elements ρ = Im1 × · · · Imn where Imi =
[2mi , 2mi+1] or [−2mi+1,−2mi ].

The first observation one makes is that, for all n,

Id =
∑
ρ∈∆

Sρ in L2(Rn)

and since 1ρ11ρ2 = 0 when ρ1 6= ρ2,

‖f‖2L2 =
∑
ρ∈∆

‖Sρf‖2L2 .

When p 6= 2 the situation is more complicated.
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Theorem 10.2. Let f ∈ L2 ∩ Lp(Rn), 1 < p <∞. Then

Bp ‖f‖Lp ≤ ‖(
∑
ρ∈∆

|Sρf |2)1/2‖Lp ≤ Ap ‖f‖Lp.

Remark 10.3. By the standard duality argument it suffices to show either one
of the two inequalities above. For example, if we manage to show the rightmost
inequality

(10.1) ‖(
∑
ρ∈∆

|Sρf |2)1/2‖Lp ≤ Ap ‖f‖Lp ,

then we can obtain the inequality on the left by observing that:∣∣∣∣∫
Rn
f g

∣∣∣∣ =

∣∣∣∣∣
∫
Rn

∑
ρ

Sρf Sρg

∣∣∣∣∣ ≤ ‖(∑
ρ∈∆

|Sρf |2)1/2‖Lp‖(
∑
ρ∈∆

|Sρq|2)1/2‖Lq

≤ Aq ‖(
∑
ρ∈∆

|Sρf |2)1/2‖Lp ‖q‖Lq ,

then taking the supremum over all g ∈ L2 ∩ Lq, and then using the (Lq)∗ ∼= Lp

duality.

The proof of (10.1) is going to make extensive use of the Rademacher function

r0(t) =

{
1 on [0, 1/2],

0 on (1/2, 1)

extended periodically on R and rm(t) = r0(2mt). Note that the rm are pairwise
orthogonal in L2[0, 1]. If {am}m ∈ `2 then we can define

F (t) =
∞∑
m=0

am rm(t), t ∈ [0, 1].

By orthogonality it’s simple to see that ‖F‖2L2[0,1] =
∑

m |am|2. We’re going to

employ the following useful fact:

(10.2) cp ‖F‖Lp ≤ ‖F‖Lp ≤ c̃p ‖F‖.

The n dimensional analog of the Rademacher function uses the family of functions
rm : Rn → R, m ∈ Nn, defined by rm(t) = rm1(t1) · · · rmn(tn). If {am}m∈Nn is `2

summable, then we may still define

F (t) =
∑
m∈Nn

am rm(t), t ∈ Q = [0, 1]n,

which satisfies the corresponding estimate

‖F‖Lp ≈ ‖F‖L2 = (
∑
m

|am|2)1/2.
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Proof of Theorem 10.2, n = 1. Let ∆1 be the family of dyadic intervals in R. In-

stead of looking at Sρ we look at the mollified operators S̃ρ defined implicitly bŷ̃
Sρf = ϕρ f̂

where ϕ is a smooth function, ϕ ≡ 1 on [1, 2], ϕ ≡ 0 outside [0, 4], and 0 ≤ ϕ ≤ 1

elsewhere, and ϕρ(x) = ϕ(2−kx) when ρ = [2k, 2k+1]. Note that Sρ = SρS̃ρ.
For t ∈ [0, 1] define

T̃t =
∑
m

rm(t) S̃Im

whose multiplier is

m̃t(x) =
∑
m

rm(t)ϕIm(x).

Fixing x, there exist at most three nonzero terms in the sum above and in fact we

can bound |m̃t(x)|+|x| |∂xm̃t(x)| ≤ B. By applying 8.12 we know that T̃t : Lp → Lp,
1 < p <∞, is bounded independently of t. Therefore

App ‖f‖
p
Lp ≥

∫ 1

0
‖T̃tf‖pLp dt =

∫ 1

0

∫
Rn
|
∑
m

rm(t) S̃Imf(x)|p dx dt

≥ cp
∫
Rn

(
∑
m

|S̃Imf(x)|2)p/2 dx.

The last step used estimate (10.2). By taking p-th roots,

‖(
∑
m

|S̃Imf |2)1/2‖Lp ≤ A′p ‖f‖Lp .

Notice that we are almost done, except we have shown the result for S̃f instead of

Sf . Note that SImS̃Im = SIm , so if we apply theorem 9.3 to the map

F : x 7→ {S̃Imf(x)}m ∈ `2

and the collection of rectangles R = {Im}m, then

‖(
∑
ρ∈∆

|Sρf |2)1/2‖Lp = ‖SRF‖Lp ≤ ‖(
∑
m

|S̃Imf |2)1/2‖Lp ≤ A′p ‖f‖Lp ,

which completes the proof when n = 1. �

The difficulty in the case n = 1 was the fact that we had to go through mollified
partial sum operators in order to prove (10.1). Now we can just treat that as a black
box and avoid the mollified operators altogether. In accordance with this, let’s set

Ttf(x) =
∑
m∈Nn

rm(t)SImf(x)

as Im runs through the dyadic rectangles, and rm runs through the n-dimensional
Rademacher functions. By applying the left hand side inequality of Theorem 10.2
for n = 1 to Ttf

‖Ttf‖Lp ≤ cp ‖(
∑
ρ∈∆1

|SρTtf |2)1/2‖Lp
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then by the orthogonality of the Rademacher functions

≤ cp ‖(
∑
ρ∈∆1

|Sρf |2)1/2‖Lp

and finally by the right hand side inequality of Theorem (10.2) for n = 1 to f

≤ cp ‖f‖Lp ,

or in other words, ‖Ttf‖Lp ≤ cp ‖f‖Lp for n = 1.

Proof of 10.2, arbitrary n. First we extend this last inequality to arbitrary n. Let

T
(1)
t1

be the operator above acting on the first coordinate, i.e.

T
(1)
t1
f(x1, . . . , xn) =

∞∑
m1=0

rm1(t1)S
(x1)
Im1

f(x1, . . . , xn).

By the inequality above,∫
R
|T (1)
t1
f(x1, . . . , xn)|p dx1 ≤ cp

∫
R
|f(x1, . . . , xn)|p dx1.

Integrating over x2, . . . , xn too gives ‖T (1)
t1
f‖Lp ≤ cp ‖f‖Lp . Follow the same steps

for each of the remaining coordinates sequentially on the functions

T
(1)
t1
f(x1, . . . , xn) ; T

(2)
t2
T

(1)
t1
f(x1, . . . , xn) ; · · ·; T

(n)
tn · · ·T

(1)
t1
f(x1, . . . , xn) = Ttf ,

the last equality holding true by definition of the Rademacher functions in higher
dimensions. Then by iterating the single-variable estimate,

‖Ttf‖Lp = ‖T (n)
tn · · ·T

(1)
t1
f‖Lp ≤ . . . ≤ cp ‖T (1)

t1
f‖Lp ≤ cp ‖f‖Lp .

Integrating over all t ∈ Q = [0, 1]n,

cp ‖f‖pLp ≥
∫
Q

∫
Rn
|Ttf(x)|p dx dt =

∫
Rn

∫
Q
|
∑
m

rm(t)SImf(x)|p dt dx

=

∫
Rn
‖F (x)(t)‖pLp(Q) dx.

By the special properties of this F -function described prior to the proof of the n = 1
case, the Lp and L2 norms are comparable. As such,

cp ‖f‖pLp ≥
∫
Rn
‖F (x)(t)‖p

L2(Q)
=

∫
Rn

(
∑
ρ

|Sρf(x)|2)p/2 dx,

which is the required result upon taking p-th roots. �

This essentially concludes our discussion of dyadic decompositions. The takeaway
point is that when we want to use sharp cutoff functions we need to work harder in
proving our theorems by mollifying first. In fact, not all sharp cutoff functions are
bound to work.
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In practice it might be a better idea to use smooth cutoff functions, because
we can apply our previous singular integral multiplier theory on them. Consider a
smooth function φ : Rn → R such that

φ ≥ 0, φ ≡ const on B1, φ ≡ 0 outside B2,

and for which ψ(x) = φ(x)− φ(2x) satisfies
∞∑

j=−∞
ψ(2−jξ) ≡ 1, ξ 6= 0.

Then this smooth cutoff function provides a dyadic, radial, annular decomposition
of the form

Id =
∞∑

j=−∞
∆jf, where ∆̂jf(ξ) = ψ(2−jξ) f̂(ξ).

This decomposition does satisfy the equivalent of Theorem 10.2:

‖(
∑
j

|∆jf |2)1/2‖Lp ≈ ‖f‖Lp .

11. Bourgan-Bresiz inequality

We start with a threefold motivational excursion.
Part I. Suppose you’re looking to solve

div Y = f

for a given f ∈ Ln(Rn). Clearly you solve this in the class Y ∈ Ẇ 1,n(Rn) = {|∇Yi| ∈
Ln} because you can first solve ∆u = f , get f ∈ Ln(Rn) ⇒ ∇u ∈ Ẇ 1,n(Rn) by
elliptic regularity, and set Y = ∇u.

Question: can you solve this in the class Y ∈ L∞(Rn)? Remember, Sobolev
embedding fails in the critical case p = n so that’s of no assistance here.

Part II. The counterpart of Sobolev embedding in the global space Rn that
replaces W 1,n with Ẇ 1,n is:

Proposition 11.1 (Gagliardo-Nirenberg). For any u ∈ C∞c (Rn),

‖u‖Ln/n−1 ≤ cn ‖Du‖L1.

Part III. As remarked, W 1,n(Rn) 6↪→ L∞(Rn), but the following theorem provides
a remedy for the situation:

Theorem 11.2 (van Schaftingen). If f , g are compactly supported vector fields on
Rn and div f = 0, then ∣∣∣∣∫

Rn
f · g

∣∣∣∣ ≤ cn ‖f‖L1 ‖∇g‖Ln.

Of course this would be trivial if there were an embedding Ẇ 1,n ↪→ L∞, but there
isn’t one.

Now let’s return to Part I. The question asked is answered in the affirmative by
the following:
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Proposition 11.3 (Bourgain-Brezis). There exists cn > 0 such that for any f ∈
Ln(Rn) we can find Y ∈ L∞ ∩ Ẇ 1,n(Rn) with div Y = f , ‖Y‖L∞ ≤ cn ‖f‖Ln.

It turns out that Propositions 11.3 and 11.1 are equivalent.

Proof of Proposition 11.3 ⇒ Proposition 11.1. We estimate the Ln/n−1 norm of u
by duality. For f ∈ Ln(Rn) arbitrary, by 11.3 there exists Y ∈ L∞∩ Ẇ 1,n(Rn) with
div Y = f . Use of the weak definition of div Y = f yields∣∣∣∣∫ uf

∣∣∣∣ =

∣∣∣∣∫ u div Y

∣∣∣∣ ≤ ‖∇u‖L1‖Y‖L∞ ≤ cn ‖∇u‖L1 ‖f‖Ln .

Since f ∈ Ln(Rn) were arbitrary, ‖u‖Ln/n−1 ≤ cn ‖∇u‖L1 . �

Proof of Proposition 11.1 ⇒ Proposition 11.3. Let (L1)n denote the space of vector
fields on Rn with L1 components, and consider its subspace E = {∇u ∈ (L1)n : u ∈
C∞c (Rn)}. Given f ∈ Ln(Rn) we may define the linear operator T : E → R

T (∇u) , −
∫
uf .

By Hölder’s inequality and then by Proposition 11.1,

|T (∇u)| ≤ ‖u‖Ln/n−1 ‖f‖Ln ≤ cn ‖∇u‖L1 ‖f‖Ln ,

so T : E → R is a bounded linear operator with ‖T‖ ≤ cn ‖f‖Ln . By Hahn-Banach
we can extend this to a bounded linear operator T : (L1)n → R with ‖T‖ ≤ cn ‖f‖Ln .
By (L1)∗ = L∞ duality there exists Y ∈ (L∞)n such that

T (v) =

∫
Y · v ∀ v ∈ (L1)n.

By construction, ‖Y‖L∞ = ‖T‖ ≤ cn ‖f‖Ln , and

−
∫
uf = T (∇u) =

∫
Y · ∇u ∀ u ∈ C∞c (Rn)

so div Y = u in the required weak sense. �

In fact, in the above proposition we may view the vector field Y as a 1-form and
div Y as d∗Y . Then 11.3 admits the following generalization:

Theorem 11.4. Suppose l 6= n − 1. Then for any (l + 1)-form X on Rn with

coefficients in Ẇ 1,n, there exists an (l+ 1)-form Y with coefficients in L∞ such that

d∗Y = d∗X

Recall that 11.3 is equivalent to 11.1. By the same token, 11.4 is equivalent to
the following generalization of 11.1 due to L. Lanzani and E. Stein:

Theorem 11.5. Suppose u is a smooth l-form with compact support in Rn.

(a) If l 6= 1 or n− 1, then

(11.1) ‖u‖Ln/n−1 ≤ C(‖du‖L1 + ‖d∗u‖L1)
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(b) If l = 1 or n− 1, then

(11.2) ‖u‖Ln/n−1 ≤ C(‖du‖H1 + ‖d∗u‖H1)

where H1 denotes the Hardy space.

We will next show that 11.5 (and thus 11.4) is equivalent to 11.2. First we state
an equivalent form of 11.2:

Theorem 11.6. Let f = (f1, · · · , fn) be a compactly supported vector field on Rn
with div f = 0, and let g be a compactly supported scalar function. Then

(11.3)

∫
Rn
f1g ≤ C‖f1‖L1‖∇g‖Ln

Proof of 11.6 (or 11.2) ⇒ 11.5. We’ll only prove part (a). Note that when l = 0 or
n, (11.1) reduces to the usual Gagliardo-Nirenberg inequality.

Next suppose 1 < l < n − 1. Let u, ϕ be smooth l-forms with compact support
on Rn. We write

(u, ϕ) = (u, (dd∗ + d∗d)∆−1ϕ)

= (du, d∆−1ϕ) + (d∗u, d∗∆−1ϕ)

=

∫
Rn

∑
I

(du)I(d∆−1ϕ)Idx+

∫
Rn

∑
J

(d∗u)J(d∗∆−1ϕ)Jdx

(11.4)

wherer I and J run through the set of non-decreasing (l + 1)- and (l − 1)-tuples,
respectively.

For each (l + 1)-tuple I = (i1, · · · , il+1) in the first summation, since l + 1 < n,
there exists i ∈ {1, · · · , n} such that i is not in I. Next recall that

0 = (d2u)i,i1,··· ,il+1
= ∂i(du)I −

l+1∑
ν=1

∂iν (du)Iν

where Iν is obtained by replacing iν with i. Therefore for each I we can find a
divergence-free vector field of which (du)I is one of the components. This allows us
to apply 11.6 and obtain

(11.5) |(du, d∆−1ϕ)| ≤ C‖du‖L1‖∇d∆−1ϕ‖Ln ≤ C‖du‖L1‖ϕ‖Ln
where the last inequality follows from the estimates on singular integral operators.

Noting that l > 1 and (d∗)2 = 0, we can estimate the second summation in the
last line of (11.4) using the same idea and get

(11.6) |(d∗u, d∗∆−1ϕ)| ≤ C‖d∗u‖L1‖ϕ‖Ln .
Combining (11.4), (11.5) and (11.6), we get

|(u, ϕ)| ≤ C(‖du‖L1 + ‖d∗u‖L1)‖ϕ‖Ln
Since ϕ is arbitrary, we conclude that

‖u‖Ln/n−1 ≤ C(‖du‖L1 + ‖d∗u‖L1)

�
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Before showing the reverse implication, we give a proof of 11.6. We’ll need the
following lemma.

Lemma 11.7. Let Φ be a smooth compactly supported function on RN . Given
p > N and δ > 0, there exists a decomposition of Φ, Φ = Φ1 + Φ2, such that

‖Φ1‖L∞ ≤ Cδ1−N/p‖∇Φ‖Lp

‖∇Φ2‖L∞ ≤ Cδ−N/p‖∇Φ‖Lp
(11.7)

Proof. Consider the annular Littlewood-Paley decomposition Φ =
∑
j

∆jΦ, as de-

scribed in the concluding remarks of the previous section. Next we fix M > 0 such
that 2M ≈ δ−1 and write

Φ1 =
∑
j>M

∆jΦ (high frequency)

Φ2 =
∑
j≤M

∆jΦ (low frequency)

To proceed we’ll make use of the following Bernstein inequality:

Claim 11.8. For 1 ≤ p ≤ q ≤ ∞, we have

(11.8) ‖∆jf‖Lq ≤ C2
jN( 1

p
− 1
q

)‖f‖Lp

Proof of Claim. Recall that ∆jf is defined by

∆̂jf(ξ) = ψ(
ξ

2j
)f̂(ξ)

Inverting the Fourier transform and letting ψ = K̂, we get

(11.9) ∆jf = 2jNK(2j ·) ∗ f
(11.8) now follows from an application of the Young’s inequlity. �

We continue with the proof of 11.7. Recall that ψ is smooth and supported in
B2 −B1/2, so the following function is smooth

ϕ(ξ) =
ψ(ξ)

2πiξ

Let G be defined by Ĝ = ϕ. Then

K̂(ξ) = ψ(ξ) = 2πiξϕ(ξ) = 2πiξĜ(ξ) = ∇̂G(ξ)

Hence K = ∇G. Using (11.9) and integrating by parts, we have

∆jΦ(x) =

∫
RN

2jNK(2jy)f(x− y)dy

= 2−j
∫
RN

2jNG(2jy)∇f(x− y)dy
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An application of Young’s inequality as in the proof of (11.8) now gives

‖∆jΦ‖L∞ ≤ C2−j(1−N/p)‖∇Φ‖Lp
Summing over j > M , we get

‖Φ1‖L∞ ≤ C2−M(1−N/p)‖∇Φ‖Lp ≤ Cδ1−N/p‖∇Φ‖Lp
This proves the first inequality in (11.7).

Next for each j ≤M we apply (11.8) to ∇Φ, getting

‖∆j∇Φ‖L∞ ≤ C2jN/p‖∇Φ‖Lp
Summing over j ≤M , we get

‖∇Φ2‖∞ ≤ C2MN/p‖∇Φ‖Lp ≤ Cδ−N/p‖∇Φ‖Lp
�

Proof of 11.6. Write x = (x1, x
′), where x1 ∈ R and x′ ∈ Rn−1. We introduce the

following notation:
Φx1(x′) = Φ(x1, x

′)

Fixing x1 ∈ R, apply 11.7 with N = n− 1 and p = n. Then we get Φx1 = Φx1
1 + Φx1

2
with

‖Φx1
1 ‖L∞(Rn−1) ≤ Cδ1/n‖∇′Φx1‖Ln(Rn−1)

‖∇′Φx1
2 ‖L∞(Rn−1) ≤ Cδ−

n−1
n ‖∇′Φx1‖Ln(Rn−1)

(11.10)

where ∇′ denotes gradient in the x′-variable. Next let f = (f1, · · · , fn) and Φ be as
given in the statement of 11.6 and consider∫

Rn−1

fx11 Φx1dx′ =

∫
Rn−1

fx11 Φx1
1 dx

′ +

∫
Rn−1

fx11 Φx1
2 dx

′ ≡ I + II

By Hölder and (11.10),

|I| ≤ Cδ1/n‖fx1‖L1(Rn−1)‖∇′Φx1‖Ln(Rn−1)

As for II, we have

|II| =
∣∣∣∣∫

Rn−1

[∫ x1

−∞
∂tf

t
1(x′)dt

]
Φx1

2 dx
′
∣∣∣∣ (fundamental theorem of Calculus)

=

∣∣∣∣∣
∫
Rn−1

[∫ x1

−∞
−

n∑
i=2

∂if
t
i (x
′)dt

]
Φx1

2 dx
′

∣∣∣∣∣ (div f = 0)

Integrating by parts, applying Hölder and using (11.10), we get

|II| ≤ ‖f‖L1(Rn)‖∇′Φx1
2 ‖L∞(Rn−1) ≤ Cδ−

n−1
n ‖f‖L1(Rn)‖∇′Φx1‖Ln(Rn−1)

Now we choose δ such that

‖fx1‖L1(Rn−1)δ
1/n = ‖f‖L1(Rn)δ

n−1
n

Then we conclude that∣∣∣∣∫
Rn−1

fx11 Φx1dx′
∣∣∣∣ ≤ |I|+ |II|
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≤ C‖f‖1/n
L1(Rn)

‖fx1‖
n−1
n

L1(Rn−1)
‖∇′Φx1‖Ln(Rn−1)

Finally, we integrate the above inequality in x1∣∣∣∣∫
Rn
f1Φdx

∣∣∣∣ =

∣∣∣∣∫
R

[∫
Rn−1

fx1x Φx1dx′
]
dx1

∣∣∣∣
≤ C‖f‖1/n

L1(Rn)

∫
R
‖fx1‖

n−1
n

L1(Rn−1)
‖∇′Φx1‖Ln(Rn−1)dx1

≤ C‖f‖L1(Rn)‖∇Φ‖Ln(Rn) (Hölder)

and we ’re done. �

Proof of 11.4 =⇒ 11.2. Let f , g be vector fields on Rn, such that div f = 0. Inter-
pret f and g as (n − 1)-forms f, g with df = 0. Write g = dα + d∗β, and we have
that

(f, g) = (f, dα) + (f, d∗β) = (f, dα)

By 11.4 we can find an (n− 1)-form Ψ ∈ L∞ such that{
d∗Ψ = d∗(dα)
||Ψ||L∞ ≤ C||d∗(dα)||Ln = C||d∗g||Ln

and hence dα = Ψ + d∗γ for some γ. We therefore have

|(f, g)| = |(f, dα)| = |(f,Ψ)| ≤ ||f ||L1 ||Ψ||L∞ ≤ C||f ||L1 ||d∗g||Ln

which completes the proof. �

In fact one can prove more delicate versions of 11.4, 11.5 and 11.2

Theorem 11.9. (B-B) Given any (l+ 1)-form X with coefficients in Ẇ 1,nRn (l 6=
n− 1), we can find an (l + 1)-form Y , with coefficients in Ẇ 1,n ∩ L∞ such that{

d∗X = d∗Y
||Y ||L∞ + ||∇Y ||Ln ≤ C||∇X||Ln

Theorem 11.10. (B-B) Given any l-form u (l 6= 1, n − 1), with coefficients in
C∞c (Rn), then

||u||
L

n
n−1
≤ C(||d∗u||

L1+Ẇ
−1, n

n−1
+ ||du||

L1+Ẇ
−1, n

n−1
)

Theorem 11.11. (B-B) If f , g are vector fields on Rn, with coefficients in C∞c (Rn)
and div f = 0, then ∣∣∣∣∫ f · g

∣∣∣∣ ≤ ||f ||L1+Ẇ
−1, n

n−1
+ ||∇g||Ln

Note 11.12. Recall that if B1, B2 are Banach spaces, then B1 ∩ B2 and B1 + B2

are Banach spaces, with norms

||b||B1∩B2 = ||b||B1 + ||b||B2

||b||B1+B2 = inf{||f ||B1 + ||g||B2 : b = f + g for f ∈ B1, g ∈ B2}
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And further, (B1 ∩B2)∗ = B∗1 +B∗2 . We make the definition

Ẇ−1, n
n−1 := (Ẇ 1,n)∗

Proving the equivalence of these three is relatively straightforward, following the
same ideas as before. The main lemma towards proving 11.9 is the following.

Lemma 11.13 (Main Lemma). Given δ > 0, we can find an Aδ > 0 such that

for every f ∈ Ẇ 1,n, there exists an F ∈ Ẇ 1,n ∩ L∞ approximating f all but one
direction, in the sense that{ ∑n

i=2 ||∂i(f − F )||Ln ≤ δ||∇f ||Ln
||F ||L∞ + ||∇F ||Ln ≤ Aδ||∇f ||Ln

(note the sum misses the first index)

Proof of 11.13 =⇒ 11.9. Here is the key idea of the proof: when computing d∗

of a (q + 1)-form (provided q < n − 1), in each component some index remains
uninvolved.

Take a (q+ 1)-form X in Ẇ 1,n(
∧q+1,Rn). We can find an α(0) ∈ Ẇ 1,n(

∧q+1,Rn)
such that

d∗α(0) = d∗X and ||∇α(0)||Ln ≤ C||d∗X||Ln
For given multi-index I of length q + 1 < n, there is an i 6∈ I and β

(0)
I approxi-

mating α
(0)
I in all but the ith direction:{

||
∑

j 6=i ∂j(β
(0)
I − α

(0)
I )||Ln ≤ δ||∇α(0)

I ||Ln
||β(0)

I ||L∞ + ||∇β(0)
I ||Ln ≤ Aδ||∇α

(0)
I ||Ln

which implies that for an appropriate choice of δ we have{
||d∗(X − β(0))||Ln ≤ Cδ||d∗X||Ln = 1/2||d∗X||Ln
||β(0)||L∞ + ||∇β(0)||Ln ≤ A||d∗X||Ln

Repeat with X − β(0) in place of X, and deduce the existence of a sequence β(k)

in Ẇ 1,n ∩ L∞ such that

||β(k)||L∞ + ||∇β(k)||Ln ≤ 2−kA||d∗X||Ln
for every k, and

||d∗(X −
K∑
k=1

β(k))||Ln ≤ 2−K−1||d∗X||Ln .

Let Y =
∑
β(k), and the theorem follows. �

We work towards proving 11.13. We make use of the algebraic relation

1 =
∑

aj
∏

1≤j′<j
(1− aj′) +

∏
(1− aj)

which holds for infinitely sums provided each aj ∈ [0, 1]. A probablistic interpreta-
tion of the above can be found in flipping coins of probabilities aj : each summand
in the RHS is the probabily of getting a ”heads” after precisely j flips.
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Recall the Littlewood-Paley decomposition: f =
∑

∆jf =:
∑
fj . If we can find

functions Gj such that |fj | ≤ Gj ≤ 1, then the sum∑
fj
∏

(1−Gj) ∈ L∞

one could then try setting F (as in the lemma) to be this sum. We find

f − F =
∑
j

fj(1−
∏
j′>j

(1−Gj′))

=
∑
j

fj
∑
j′>j

Gj′
∏

1<j′′<j′

(1−Gj′′)

=
∑
j′

Gj′
∑
j

fj
∏

1<j′′<j

(1−Gj′′)

=
∑
j

GjHj

defining Hj =
∑

j fj
∏

1<j′′<j(1−Gj′′) ≤ 1. We then estimate

|∂i(f − F )| ≤
∑
j

|∂iGj |+ |∂iHj |

≤
∑
j

|∂iGj |+ ∑
j′<j

|∂ifj′ |+ |∂iGj′ |


Ultimately we need to bound ||

∑
j ∂iGj ||n in terms of ||∇f ||n. This won’t hold

with the naive choice Gj = |∆jf |.
Here are two possible strategies:
(1) Control the low frequencies by the high frequences. Replace 2j |∆jf | by

2j |∆jf |χ{2j |∆jf |>
∑
k<j 2k|∆kf |}

in which case

||
∑
j

(2j |∆jf |χ{...}||Ln ≤ || sup
j

2j |∆jf |||Ln

≤ ||(
∑
j

(2j |∆jf |)2)1/2||Ln

≤ ||∇f ||Ln

(2) Control the spatial directions. Choose functions ωj with

|∆jf | ≤ ωj ≤ ||∆jf ||L∞

such that

|∂iωj | ≤ 2j−σωj for i = 2, . . . , n

|∂1ωj | ≤ 2jωj
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Taking Gj = ωj , we just need to control

|| sup 2jωj ||Ln ≤ 2σ
n−1
n ||∇f ||Ln

12. Isoperimetric inequalities in nonpositive curvature

Let Mn be a simply connected manifold with non-positive sectional curvature.

Conjecture 12.1. The isoperimetric inequality is valid: For all bounded domains
Ω ⊆M , we have

vol(Ω) ≤ C(n) area(∂Ω)n/(n−1),

where C(n) is the constant for round balls in Rn, i.e. C(n) = vol(B)/ area(∂B)n/(n−1).

In dimension n = 2, this was proved by Weil; in dimension n = 3, there are
various approaches by Kleiner [?], Ritoré [?] and Schulze [?] (the latter uses a flow
by a power of the mean curvature scalar). We will present Kleiner’s approach later
in this section. First, we will discuss Croke’s proof which works in all dimensions
but is only sharp for n = 4. Let us also mention than in a similar direction, Hoffman
and Spruch proved a Michael-Simon inequality for non-positive sectional curvature,
namely if Σn ⊂Mn+1, then(∫

Σ
|u|n/(n−1) dσ

)(n−1)/n

≤ C
(∫

Σ
|u| · | ~H|+ |∇u| dσ

)
.

The idea of Croke’s proof in n = 4 dimensions is to represent the volume and
area of Ω ⊂ M by the integral over the unit tangent bundle of ∂Ω. We change our
notation to match the one of Croke:

• (Mn, ∂Mn) is a compact set in a manifold with non-positive sectional cur-
vature,
• UM denotes the unit tangent bundle of M ,
• U∂M denotes the unit tangent bundle of M over ∂M , i.e. U∂M = U∂MM ,
• U+∂M denotes the unit upper hemisphere in U∂M . The measure on U+∂M

is the local product measure du where the measure of the fiber is that of the
unit upper hemisphere;
• for v ∈ UM , γv is the geodesic with γ′v(0) = v, and we put

`(v) := max{t | γv(t) ∈M},

so that γv(`(v)) ∈ ∂M ;
• for p ∈ ∂M and u ∈ U+

p ∂M , let cos(u) denote the cosine of the angle between
u and np, the inward unit normal to ∂M at p, i.e. cos(u) = 〈u, np〉.

Lemma 12.2. (Santalo) For any integrable function f on UM , we have

(12.1)

∫
UM

f(v) dv =

∫
U+∂M

∫ `(u)

0
f(γu(t)) cos(u) dt du.

Lemma 12.3. (1) vol(M) = 1
ωn−1

∫
U+∂M `(u) cos(u) du.
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(2) If ant(u) denotes the opposite vector at the end of the geodesic starting at
u ∈ U+∂M , i.e. ant(u) = −γ′u(`(u)), then

(12.2)

∫
U+∂M

g(u) cos(u) du =

∫
U+∂M

g(ant(u)) cos(u) du.

Proof. For the first part, simply use f ≡ 1 in Lemma 12.2. For the second part, note
that (12.1) means that the geodesic flow ξ is a measure-preserving map from Q =
{(u, t) | u ∈ U+∂M, t ∈ [0, `(u)]} to UM , where Q is given the measure cos(u) dt du,
and ξ has an inverse (smooth almost everywhere), also measure-preserving, which is
evidently given by ξ−1(v) = (−γ′−v(`(−v)), `(−v)) for v ∈ UM . Since the antipodal
map −1: UM → UM is also measure-preserving, we see that

ξ−1 ◦ (−1) ◦ ξ : (u, t) 7→ (ant(u), `(u)− t)
is also measure-preserving. But this means that for every integrable G : Q→ R, we
have∫

U+∂M

∫ `(u)

0
G(u, t) cos(u) dt du =

∫
U+∂M

∫ `(u)

0
G(ant(u), `(u)− t) cos(u) dt du,

so plugging in G(u, t) = g(u)/`(u) and integrating out t (note that `(u) = `(ant(u))),
we obtain (12.2). �

Lemma 12.4. (1) We have∫
U+∂M

`(u)n−1

cos(antu)
du ≤ area(∂M)2,

and equality holds iff M is flat and convex.
(2) We have∫

U+∂M
cos(antu)1/(n−2) cos(u)(n−1)/(n−2) du ≤ vol(∂M)c2(n),

for some universal constant c2(n), with equality iff cosu = cos(antu) for all
u ∈ U+∂M .

Proof. For the first inequality, let dx denote the volume form of M and dp the
volume form of ∂M . Use polar normal coordinates (u, r) at q ∈ ∂M and consider
exp{tu | u ∈ U+

q ∂M, t ∈ [0, `(u)]}, then dx = F (u, r) du dr, where F is the Jacobian;

now since M is non-positively curved, comparison tells us that F (u, r) ≥ rn−1. But
clearly ∫

U+
q ∂M

F (u, `(u))

cos(antu)
duq = area(Aq),

where Aq ⊆ ∂M (with equality holding for all q iff ∂M is convex), and integrating
this over ∂M yields ∫

U+∂M

F (u, `(u))

cos(antu)
du ≤ area(∂M)2.

Using F (u, `(u)) ≥ `(u)n−1 finishes the proof of the first part.
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We next prove the second inequality: Using Hölder’s inequality and Lemma 12.3,
we estimate∫

U+∂M
cos(antu)1/(n−2) cos(u)(n−1)/(n−2) du

=

∫
U+∂M

cos(antu)1/(n−2) cos(u)1/(n−2) cos(u) du

≤
(∫

U+∂M
cos(antu)2/(n−2) cos(u) du

)1/2(∫
U+∂M

cos(u)2/(n−2) cos(u) du

)1/2

=

∫
U+∂M

cos(u)n/(n−2) cos(u) du

=

∫
∂M

(∫
U+
q ∂M

cos(u)n/(n−2) duq

)
dq

= vol(∂M)c2(n),

where

c2(n) =

∫
U+
q ∂M

cos(u)n/(n−2) du

(which is of course independent of q). Equality holds iff cos(antu) = k cos(u). Since
cos(u), cos(antu) ∈ [0, 1], and both attain the value 1 at some point, we must have
k = 1. �

We are now ready to prove the isoperimetric inequality:

Proof of the isoperimetric inequality, sharp for n = 4. Using Hölder and Lemma 12.4,
we estimate

vol(M) =
1

ωn−1

∫
U+∂M

`(u) cos(u) du

=
1

ωn−1

∫
`(u)

cos(antu)1/(n−1)
cos(antu)1/(n−1) cos(u) du

≤ 1

ωn−1

(∫
`(u)n−1

cos(antu)
du

)1/(n−1) (
cos(antu)

n−1
n−2
· 1
n−1 cos(u)

n−1
n−2 du

)n−2
n−1

≤ 1

ωn−1
area(∂M)2/(n−1)

(
area(∂M)c2(n)

)(n−2)/(n−1)

=
c2(n)(n−2)/(n−1)

ωn−1
area(∂M)n/(n−1).

In order to have equality, we get

`(u)n−1

cos(antu)
= λ cos(antu)1/(n−2) cos(u)

which for n = 4 means `(u)3 = λ cos(antu) cos(antu)1/2 cos(u)3/2, and from the
case of equality in Lemma 12.4, we also know cos(antu) = cos(u); hence `(u) =
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λ1/3 cos(u) when n = 4, which is exactly the equation of a ball with diameter λ1/3

in Euclidean space. (Note that flatness follows from the first part of Lemma 12.4.)
Let us remark that in the above proof, if n 6= 4, we would get that M is flat

and cos(u) = cos(antu) in the case of equality still, but this would give `(u) =

λ̃ cos(u)2/(n−2); such M however does not exist. �

Next, we present Kleiner’s approach to the isoperimetric inequality in n = 3
dimensions. Recall that we have the isoperimetric profile function

IM (V ) = inf{area(∂Ω) : Ω ⊂M compact, C∞, vol(Ω) = V }.

If Ω minimizes IM (V ) for V = vol(Ω) we call Ω an isoperimetric domain. We’re
going to need the following result on the existence and regularity of isoperimetric
domains in bounded sets, which we will treat as a black box.

Theorem 12.5. Let Bn be a compact manifold with smooth boundary ∂Bn, and let
V ∈ (0, vol(Bn)). Then there exists a domain Ω ⊂ Bn with boundary Σ = ∂Ω such
that:

(1) vol(Ω) = V , area(Σ) = IB(V ),
(2) (when n = 3,) Σ is C1,1 in a neighborhood of ∂Bn,
(3) there exists a singular set Σsing ⊂ Σ ∩ intB of Hausdorff dimension ≤ n −

8 such that (Σ ∩ intB) \ Σsing is a C∞ hypersurface with constant mean
curvature H,

(4) the mean curvature h of Σ is defined a.e. and h ≤ H.

Remark 12.6. The first and third claims are standard in geometric measure theory.
The second claim pertaining to boundary regularity is due to [?]. The last claim
follows by a variational argument. Suppose u is Σ-deformation supported in the
interior of B, and v is a Σ-deformation supported on ∂B, and such that

∫
Σ v =

∫
Σ u

to preserve volume. By minimality,∫
Σ
nHu ≥

∫
Σ
nhv.

Since H is constant where u is supported,

nH ≥
∫

Σ nhv∫
Σ u

=

∫
Σ nhv∫

Σ v

for all v. In view of v being arbitrary and the differentiation theorem, H ≥ h.

Remark 12.7. IB(·) is continuous. In other words, if Ωi is a sequence of isoperi-
metric domains with vol(Ωi)→ V , then area(∂Ωi)→ IB(V ).

Theorem 12.8. Let M3 be simply connected, complete, noncompact, with sec ≤
C < 0. Then its isoperimetric profile function satisfies IM3 ≥ IH3

C
.

The theorem is going to follow from the following proposition. In fact the propo-
sition implies the theorem in all dimensions, but we can only prove the proposition
when n = 3.
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Proposition 12.9. Let M3 be simply connected, complete, noncompact, with sec ≤
C < 0 Let Ω be compact, C1,1, Σ = ∂Ω. Then

max
Σ

H ≥ HH3
C

(area(Σ)),

where HH3
C

(area(Σ)) is the mean curvature of the geodesic ball of area equal to

area(Σ) in the model hyperbolic three-space H3
C with curvature C.

Proposition ⇒ Theorem, arbitrary n. Fix Ω ⊂ M3. Choose a geodesic ball B large
enough that Ω ⊂ B ⊂Mn. Let ΩV be an isoperimetric domain in B with vol(ΩV ) =

vol(Ω) , V . Let HV be the constant mean curvature of ΩV on its interior regular
part. Then by the proposition, HV ≥ HHnC (area(∂ΩV )).

Choose a volume-decreasing deformation of ΩV supported on the interior regular
part. Call the deformed surfaces ΩV+∆V , for ∆V ≤ 0, and vol(ΩV+∆V ) = V + ∆V .
By minimization, IB(V + ∆V ) ≤ area(∂ΩV+∆V ), so for ∆V < 0:

IB(V + ∆V )− IB(V )

∆V
≥ area(∂ΩV+∆V )− area(∂ΩV )

∆V
→ nHV ≥ nHHnC (IB(V )),

i.e. the left derivative of the isoperimetric profile satisfiesD−IB(V ) ≥ nHHnC (IB(V )).

On the other hand in the model case we have I ′HnC
(V ) = nHHnC (IHnC (V )). The two

isoperimetric profiles agree when V = 0 so by integrating the differentials,

area(∂Ω) ≥ area(∂ΩV ) = IB(V ) ≥ IHnC (V ).

�

Proof of proposition, n = 3. First we do the case where Σ = ∂Ω is a topological S2.
By Gauss-Bonnet and the Gauss equation,

4π =

∫
Σ
K =

∫
Σ

secTΣ +k1k2 ≤
∫

Σ
C +H2 ≤ (C + max

Σ
H2) area(Σ).

We would get exact equality in hyperbolic space, so maxΣH ≥ HH3
C

(area(Σ)).

Let’s check the rigidity claim when Σ = ∂Ω. If equality holds above then secTΣ ≡
C, which is also the upper bound for sectional curvatures on M3, and Σ = ∂Ω
is umbillic, whose mean curvature matches the mean curvature of the appropriate
geodesic ball in hyperbolic space. These conditions force Ω to be a geodesic ball in
Hn
C .
Now let’s look at general domains Ω. Let D0 be the convex hull of Ω, and let

Ds = {x ∈ M : dist(x,D0) < s} be the s-fattening of D0. Then at least for s > 0
small enough, Ds is also convex, Cs = ∂Ds is a topological S2, and there exists a
sufficiently smooth closest point projection r : M3 \D0 → Σ. By Gauss-Bonnet,

4π =

∫
Cs

K =

∫
Cs

secTΣ +k1k2(Cs)

≤
∫
Cs

C + k1k2(Cs)

=

∫
r−1
s (Σ∩∂D0)

C + k1k2(Cs) +

∫
Cs\r−1

s (Σ∩∂D0)
C + k1k2(Cs)
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≤
∫
r−1
s (Σ∩∂D0)

C +H2
Cs + C area(Cs \ r−1

s (Σ ∩ ∂D0))

+ C

∫
Cs\r−1

s (Σ∩∂D0)
k1k2(Cs).

The middle term is ≤ 0 since C < 0. We let s ↓ 0. In doing that, the first integral can
be estimated from above by (C +H2

C0
) area(Σ∩ ∂D0) because the Riccati equation

gives controlled growth rate bounds on H. The last integral converges to zero, since
on the regular points of ∂D0 \Σ we have k1k2 = 0 because we’re on the part of the
convex hull of Σ that lies away from Σ. Putting it all together,

4π ≤ (C +H2
0 ) area(Σ ∩ ∂D0) ≤ (C +H2

0 ) area(Σ).

Like we argued before, if were were on hyperbolic space we would have gotten
equality all along. Therefore, H0 ≥ HH3

C
(area(Σ)). �

Now we give the proof of the 3-dimensional isoperimetric inequality due to Ritoré.
Let M3 be a complete, simply-connected 3-manifold with non-positive sectional
curvature and let Σ be an embedded compact surface.

Pick a point p ∈ Σ and let dp(·) be the distance to p. Consider the following
conformal change of metric

gε = ρ2
εg = e2uεg, where uε = log

2ε

1 + ε2d2

We will prove the following inequality:

(12.3)

∫
Σ
H2dσ ≥ 4π

with equality iff Ω is flat. Note that (12.3) implies 12.8, for if (12.3) holds, then we
have

area(Σ)(max
Σ

H)2 ≥
∫

Σ
H2dσ ≤ 4π = area(Σ)(HH3

0
(area(Σ)))2

and thus 12.9 holds. As shown previously, this implies 12.8.

Proof of (12.3). Recalling that the sectional curvature of a 2-plane σ in TM before
and after the conformal change of metric are related by

e2uεKε(σ) = K(σ)−∇2uε(ei, ei)−∇2uε(ej , ej) + (∇eiuε)2 + (∇ejuε)2 − |∇uε|2

where {ei, ej} is an orthonormal basis for σ with respect to g. Plugging in the
expression for uε and applying the Hessian comparison theorem (M has non-positive
sectional curvature), we arrive at

Kεe
2uε ≥ K + e2uε

To continue, we first write∫
Σ
H2dσ =

∫
Σ

(H2 +K)dσ −
∫

Σ
Kdσ.

Note that K denote the sectional curvature of TΣ with respect to the ambient metric
g and NOT the Gauss curvature of Σ.
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Next we write

H2 +K = H2 − κ1κ2 + κ1κ2 +K

= |
◦
A|2 + (κ1κ2 +K)

then we see that ∫
Σ

(H2 +K)dσ

is conformally invariant. Hence∫
Σ
H2dσ =

∫
Σ

(H2 +K)dσ −
∫

Σ
Kdσ

=

∫
Σ

(H2
ε +Kε)dσε −

∫
Σ
Kdσ

=

∫
Σ
H2
ε dσε +

∫
Σ

(e2uεKε −K)dσ

≥
∫

Σ
H2
ε dσε +

∫
Σ
dσε

≥
∫

Σ
dσε

Using the fact that letting ε → 0 corresponds to blow-up at p with a spherical
metric, we have

lim
ε→0

∫
Σ
dσε = 4π

Hence (12.3), and thus 12.8, is proved �

Next let’s turn our attention to compact manifolds and discuss Levy and Gromov’s
isoperimetric inequality. For a smooth domain Ω in the standard sphere Sn, define
the following function

ISn(α) =
vol(Bα)

vol(Sn)
,

where Bα is a geodesic ball with vol(Bα) = α vol(Sn). Then the classical isoperi-
metric inequality says that

area(∂Ω) ≥ vol(Sn)ISn(α), where α =
vol(Ω)

vol(Sn)

In 1919, P. Levy generalized this result to convex hypersurfaces in Rn+1. Later,
Gromov extended Levy’s method to all Riemannian manifolds with a lower bound
on the Ricci curvature [?].

Theorem 12.10. Let Mn be a closed manifold with Ric ≥ (n− 1)g. Then for any
smooth domain Ω in M , we have

area(∂Ω) ≥ vol(Mn)ISn(α), α =
vol(Ω)

vol(Mn)
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The proof relies on a comparison theorem due to Levy, Heintz and Karcher, which
we state below. Let Hn−1 be a smooth hypersurface of M and define the following
map:

exp : H × R+ →M

(h, t) 7→ exph(tν)

where ν is a unit normal vector field. Let J(h, t) denote the Jacobian of this map.
Next consider a model pair (M,H) where M has constant sectional curvature k and
H has constant mean curvature η. We denote the corresponding Jacobian by J .

There’s an explicit formula for J = Jη,k, namely

Jη,k(h, t) =

(
dSk(t)

dt
− ηSk(t)

)n−1

, Sk(t) =
1√
k

sin
√
kt

With these notations, the Levy-Heintz-Karcher comparison theorem says the fol-
lowing.

Theorem 12.11. With the above notations, supposing in addition that RicM ≥
(n− 1)kg and that the mean curvature of H at h with respect to ν is bounded below
by η, we have

|J(h, t)| ≤ Jη,k(t)

Proof of 12.10. Fix α ∈ (0, 1), and consider all the hypersurfaces in M that divides
it into two parts, Ω and M/Ω, with

vol(Ω) = α vol(M)

A theorem of Almgren guarantees the existence of a hypersurface ∂Ω in this class
having constant mean curvature, which we denote by η. (Strictly speaking, the ∂Ω
produced by Almgren’s theorem may have a singular set, but it does not affect our
arguments.)

For h ∈ ∂Ω, let c(h) be the distance to the first focal point along the normal
geodesic exph(tν) and assume that ν points into Ω, then

(12.4) vol(Ω) =

∫
∂Ω

∫ c(h)

0
J(h, t)dtdσ

Combining 12.11 and (12.4), we get

(12.5) vol(Ω) ≤ area(∂Ω)

∫ β+
η,1

0
Jη,1dt

where β+
η,1 is the first positive time when Jη,1 = 0. Note that if we take Ω to be a

geodesic ball in Sn of radius β+
η,1 then we would get equality in (12.5). Therefore

area(∂Ω) ≥ vol(∂Ω)
A1(β+

η,1)

V1(β+
η,1)

where A1(r)(V1(r)) denote the area(volume) of ∂Br(Br) in Sn. Note that A1/V1 is
decreasing in r.
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Now if the radius of Bα, r(Bα), is greater than or equal to β+
η,1, then

area(∂Ω) ≥ vol(Ω)
A1(r(Bα))

V1(r(Bα))

=
vol(Ω)

vol(Bα)
area(∂Bα)

=
vol(M)

vol(Sn)
area(∂Bα)

= vol(Mn)ISn(α)

and we are done. On the other hand, if r(Bα) < β+
η,1, then we reverse the normal

vector field so that it points into M/Ω and redefine J and Jη,1 accordingly. Letting

β−η,1 be the first time when Jη,1(t) = 0, we must have r(Bα) ≥ β−η,1 by assumption.
Now the argument from the previous case applies. �
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