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Minimal surfaces and the Allen—Cahn
equation on 3-manifolds

Christos Mantoulidis

Abstract

Following our lecture at the 2024 International Congress of Basic Science, we discuss
the context and main results of our joint work with O. Chodosh, “Minimal surfaces
and the Allen-Cahn equation on 3-manifolds.” We also discuss recent progress, open
questions, and future directions.
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1 Introduction

Our main object of study are minimal submanifolds of Riemannian manifolds,
which are variational generalizations of the notion of a geodesic.

Definition 1.1 A closed immersed submanifold ¥* C (M™, g) is called minimal
if it is a critical point of the area functional, i.e.,

[4 Areag(graphy(tX))],_, = 0.

for all X e T(NX) (normal vector fields to X).
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We further define the (Morse) index and nullity of ¥ as:
ind[¥] = max{dimV : V. C I'(NX) subspace with
[% Areag(graphz(tX))L:O <0 forall X € V\ {0}},
nul[X] = max{dimV : V. C T'(NX) subspace with
L‘l% Areag(graphz(tX))] 0= 0 for all X € V}.

t—=

Minimal submanifolds have had spectacular applications in Riemannian ge-
ometry, helping resolve open questions that, a priori, do not involve them in their
formulation. We list a small number of important examples from classical differ-
ential geometry.

Conjecture 1.2 (Frankel’s conjecture) Closed Kahler manifolds with positive
bisectional curvature are biholomorphic to complex projective spaces.

Siu—Yau proved Conjecture in [I] relying crucially on constructing suit-
able homotopically area-minimizing (branched) two-spheres. There is a separate,
algebraic proof of the conjecture by Mori ([2]).

Conjecture 1.3 (Geroch’s conjecture) There is no metric with positive scalar
curvature on a 3-torus.

Schoen—Yau proved Conjecture in [3] relying crucially on constructing
suitable area-minimizing incompressible surfaces. There is another proof by Gromov—
Lawson using spinors ([4]), and a recent one by Stern using harmonic maps ([5]).

Conjecture 1.4 Ricci flow with surgery terminates in finite time on closed ori-
entable 3-manifolds with only on-aspherical factors in their prime decomposition.

After Perelman’s initial proof of Conjecturein [6], Colding—Minicozzi gave
a new elegant proof in [7] by keeping track of the area of certain minimal two-
spheres obtained by mountain pass methods and showing it must become zero in
finite time.

In each example above, it was crucial to have a sufficiently powerful existence
theory for minimal submanifolds. We refer the reader to [§] for a comprehensive
list of references and history.

2 Allen—Cahn solutions

Our aim is to discuss a recent way to obtain minimal hypersurfaces: as limits,
in the Hausdorff sense, of nodal sets of solutions to certain semilinear elliptic
equations.

Definition 2.1 Let W : R — R be a smooth double-well potential, i.e., with:
e W>0onR\{£l}, W(£1) =0,
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o W'(£1) >0>W"(0),
e W/ #£0 on R\ {£1,0}, W/(£1) =W’'(0) =0,
o W even.

Fiz a closed (M™,g). For e > 0, consider E. : C*°(M) — R given by
E.u] i= /M £ |Vyul® + LW (u) dug.

We say that u. € C*(M) is an Allen—Cahn e-solution if it is a critical point
of B, i.e.,
[%Ef[u& + tCHt:O =0

for all ¢ € C°(M); equivalently, u. satisfies the Allen—-Cahn equation
e2Agu. = W'(u.) on M.
We define the (Morse) index and nullity as before:
inde[ue] = max{dimV : V. .C C°°(M) subspace with
[ Eeluc )] <0 forall ¢ € V\ {0},
nulc[ue] = max{dimV : V.C C*°(M) subspace with
[%Es[us n tg]] =0 forall (€ V).

t=

For much of the rest of the write-up, we fix a particular choice of W, such as
the canonical choice
W(t) =11 -#)2
We will seek to study how nodal sets of Allen-Cahn e-solutions converge to

minimal hypersurfaces as ¢ — 0, also keeping track of multiplicity. To that end,
the following definition seems convenient:

Definition 2.2 Fiz a closed (M™, g) and a closed immersed hypersurface ¥ C M.
We say that a sequence of Allen—Cahn €;-solutions u., with €; — 0 satisfies

Ue, ~ 2 ase; — 0

if {u., =0} = X in the Hausdorff sense and E.,[u.,| — Areay(X) as i — ooE|

This convergence of Allen—Cahn g;-solutions to minimal hypersurfaces was
first studied by Modica, Mortola, and Sternberg ([9, 10, 11]) in the setting of
minimizers and I'-convergence. It has seen explosive growth in the last twenty
years, and we give a brief outline of results that contextualize and lead the way to
ours.

Pacard—Ritoré showed in [12] that generic minimal hypersurfaces must occur
as Allen-Cahn e-solution limits; see also the works of De Philippis—Pigati ([13])
and del Pino-Kowalczyk—Wei ([14]).

1'We are suppressing a W-dependent multiplicative constant in front of Areaq(Z).
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Theorem 2.3 ([12]) Fiz a closed (M™,g) and a closed embedded hypersurface
¥ C M which 1s:

e nondegenerate (i.e., nul[X] = 0), and
o separating (i.e., it bounds a domain in M ).

Then, for all small e > 0, there exist Allen—Cahn e-solutions u. such that uge ~ %
as e — 0.

It was recently observed by the author in [I5] that the assumption of non-
degeneracy cannot be removed in general; see also related work of Caju—Gaspar
([16]) and Chen-Gaspar ([I7]). This can be viewed as an example of extra rigidity
on the part of the Allen—Cahn equation.

Naturally, if we are looking to the Allen—Cahn equation to provide us with
a means to construct mew minimal hypersurfaces, then Theorem goes in the
wrong direction: it assumes the existence of a minimal hypersurface and produces
Allen—Cahn e-solutions converging to it. The Gaspar—Guaraco Zsy-cohomological
min-max construction theorem below from [I8] offers Allen—Cahn e-solutions with-
out starting from a background ¥; see also the previous work of Guaraco ([19]):

Theorem 2.4 ([18]) Fiz a closed (M™,g). For e > 0, p € N, denote by c.(p)
the p-parameter Zs-cohomological min-maz energy of E. on (M, g). Then:

(a) 0= E.(+1) = c.(0) < ... < ce(p) < ... < E-(0) = L Vol, (M)W (0),

e

(b) if cc(p) < E-(0), then there exists an Allen—Cahn e-solution u. , with

Es [us,p] = Ce (p)7 inds [us,p] < b < inds [us,p] + HUIE [us,p},
(C) lim. ¢ Cs(p) = AM,g(p) € (0, OO); and

1
(d) oy g < Arg(p)p™ n < oy, where oy s, € (0,00).

This theorem was strongly influenced by the Almgren—Pitts min-max theory
([20]) and its developments by Marques—Neves ([21]). Subsequently, the authors
obtained in [22] a refinement of (d) mirroring the analogous Almgren—Pitts Weyl
law of Liokumovich-Marques—Neves ([23]):

Theorem 2.5 ([22]) Assume the setting of Theorem[2.]} Then:

1 n
(d’) (“Allen—Cahn Weyl Law”) limp_,00 Anr,g(p)p~ n = a(n) Volg(M) n .

Let us return to Theorem We may extract minimal hypersurfaces ¥ from
the Allen—Cahn e-solutions u. , in it by fixing p, sending ¢ — 0, and invoking the
following powerful compactness theorem, which is the culmination of the works of
Hutchinson-Tonegawa ([24]), Tonegawa—Wickramasekera ([25]), Guaraco ([19]),
and Gaspar ([26]):

Theorem 2.6 (|24, 25, 19, 26]) Fiz (M™,g), 3<n <7. Lete; — 0 and u,., be
Allen—Cahn g;-solutions satisfying:

e sup,; F.,[u.,] < oo, and

e sup, ind,, [u.,] < oo.
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Then, there exist disjoint closed embedded minimal hypersurfaces Xq,..., %, C
(M™,g) and integers ma,...,my > 1 so that, subsequentially:

(a) ue, ~>miEU---UmpXy ase; — 0, and
(b) ind[31] + ...+ ind[3x] < lim,; ind,, [u,,].

Above, the case n > 8 is omitted due to the usual presense of a codimension-8
singular set in minimal hypersurfaces, while the case n = 2 is omitted due to a
serious subtlety that will be addressed later.

The integers myq,...,my > 1 are called the corresponding multiplicities of
the components X1, ..., Y. Whether or not all multiplicities have to equal 1 plays
a fundamental role in the applicability of these methods in counting problems for
minimal hypersurfaces. See Section [4] for more.

It turns out that high-multiplicity solutions can, in general, occur in limits of
Allen—Cahn e-solutions. The following is a theorem due to del Pino-Kowalczyk—
Wei-Yang ([27]):

Theorem 2.7 ([27]) Fiz a closed (M™,g) and let ¥ C (M™,g) be a closed em-
bedded nondegenerate minimal hypersurface and m > 1 be an integer so that:

e |As|? + Ric, >0 on X, and
e 3 is separating if m is odd.

Then, there exist £, — 0 and Allen—Cahn €;-solutions u., so that:

Ug, ~» mX as g, — 0.
It is worth remarking here that it was conjectured in [27] that the index of
Ue,, i.e., ind,, [u,,], diverges as i — oo.

3 Multiplicity-one theorem

Our main joint theorem with O. Chodosh is that high multiplicity will not occur
in the 3-dimensional setting of Theorem [2.6] where index bounds are assumed, if
the limiting ¥4, ..., Xy (or rather, their two-sided covers) are known to be nonde-
generate:

Theorem 3.1 ([28]) Assume the setting of Theorem|2.0, with n = 3. Then, we
have in addition to Theorem[2.6 (a) and (b):

(c) Away from < lim; ind.,[u.,] points on X, {u., = 0} decomposes as disjoint
graphs converging in Clzof to ¥ with suitable multiplicities,

(d) some m; > 2 = there exists a positive Jacobi field on two-sided cover ¥
of ;i (thus, ind[¥}] = 0 and nul[X;] = 1), and

(e) allm; =1 = ind[Z] + nul[Z] > lim, ind., [uc,] + nul., [ue, ] [

i

2We note that this particular conclusion, (e), was proven in all dimensions.
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In particular, high multiplicity does not occur when the metric g is “bumpy,”
i.e., when no immersed minimal surface carries nontrivial Jacobi fields. In par-
ticular, Theorem resolved a strong form of a “multiplicity one” conjecture of
Marques—Neves, in the setting of Allen—-Cahn. Note that the “bumpy” condition
is generic in the sense of Baire category, as shown by White in [29].

One main ingredient of the theorem, for conclusions (c¢) and (d), is based on
sharpening some recent novel work of Wang—Wei [30] that resolved the “finite index
implies finitely many ends” Allen-Cahn conjecture in R2. Other than generalize
these to the 3-dimensional setting (albeit with energy bounds), we had to improve
the obtained regularity to ensure that the level sets are close enough to being
minimal to construct Jacobi fields.

Another main ingredient, for conclusion (e), was to study a refined expansion
of the second variation operator to obtain an inequality that goes in the opposite
direction relative to Theorem s (b), and which is sensitive to the fact that our
multiplicity equals one. See also work of Alikakos—Fusco—Stefanopoulos ([31]) and
del Pino-Kowalczyk—Wei ([14]), though here an added difficulty is that in our case
the u., are essentially arbitrary and not constructed by us.

4 Geometric implication

Finally we point out an important consequence of this work to the study of min-
imal surfaces in closed Riemannian 3-manifolds (M3, g). Let us assume that the
metric g on M is bumpy, i.e., that nul[X] = 0 for all closed immersed minimal
Y. Fixing p and applying Theorem for sufficiently small € and inputting the
sequence of u. , with £ — 0 into Theorems we find that the multiplicity-
one conclusion does indeed hold, so there exists an embedded hypersurface ¥,
(possibly disconnected) so that:

Area,(2,) ~ p'/3, ind[S,] = p.

Noting that ¥, may be disconnected, nonetheless there exists at least one con-
nected component ¥ C ¥, with

Areay(2) < p'/3, ind[8,] > p?/2. (4.1)

~

Combining (4.1)) and work of Ejiri-Micallef ([32]) yields
genuS(E;) > %p2/3 — O(pl/S).

In particular, this resolved a special case of a conjecture due to Yau in the three-
dimensional case and for generic metrics:

Conjecture 4.1 (Yau’s conjecture) Any closed (M",g), 3 < n <7, contains
infinitely many distinct closed embedded minimal hypersurfaces.

Irie-Marques—Neves had previously resolved, in [33], Conjecturefor generic
metrics using the Liokumovich-Marques—Neves Weyl law, from [23], for the Almgren—
Pitts width spectrum. An analogous Allen—Cahn strategy was subsequently taken
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by Gaspar—Guaraco once they obtained Theorem Our proof of existence of in-
finitely many embedded surfaces also carries through when Ric, > 0 and n = 3; see
also the previous Almgren—Pitts work of Marques—Neves ([34]) when Ricy > 0 and
3 <n < 7. Song finally resolved Conjecture [I.1] in full using a novel modification
of the Almgren—Pitts width spectrum in [35].

5 Above dimension three

Note that Theorem leaves open the case 4 < n < 7, even though it was handled
by Theorem [2.6] There is no evidence to suggest that Theorem [3.I] will break in
these dimensions. In fact, recent work of Wang-Wei ([36]) can be plugged into
the proof of Theorem in [28] and can extend it to 4 < n < 7, if the following
ingredient were provable:

Conjecture 5.1 (Allen—Cahn Stable Bernstein Conjecture) If 4 < n <7
and u : R™ = R is an Allen—Cahn 1-solution, which is:

o stable, i.e., indi[u] = 0 for compactly supported variations, and
e of Euclidean energy growth, i.e., limsupp_, ., R*™" IBR |Vu|? < ooﬂ

then u is a function of one variable.

If, indeed, Conjecture [5.1}is true for 4 < n < 7, then Theorem automati-
cally extends to the corresponding dimension together with the help of Wang—Wei’s
recent work in [36].

This conjecture was proven for n = 2 by Ghoussoub—Gui in [37] even without
the Euclidean energy growth assumption. For n = 3, it was proven by Ambrosio—
Cabré in [38]. For n > 8, this conjecture is known to not hold by work of Pacard—
Wei in [39]; see also the work of Liu-Wang—Wei ([40]).

6 Dimension two

Note that Theorem 2.6l was not stated for dimension n = 2. This is because current
techniques can only show that one has convergence u., ~» X, not to an immersed
geodesic X, but rather to some stationary geodesic network X (again, possibly
with multiplicity) with < lim; ind,, [u.,] vertices altogether. This remains an open
question:

Question 6.1 Does Theorem (a) extend to n = 2, but with X1,..., %, not
necessarily disjoint? What is the appropriate extension of (b)?

The answer to (a) Question|6.1|is currently only known for general double-well
potentials W, or even the special case W (t) = (1 —*)?, when sup; ind., [ue,] < 1
by work of the author in [41].

Recently, O. Chodosh and the author obtained an affirmative answer to (a)
of Question in [42] for a special choice of potential W coming from the theory

3This assumption can be dropped, if one seeks a stronger conjecture.
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of integrable systems but which still satisfies all relevant double-well properties.
We made diligent use of new results of Liu—Wei ([43]) for this particular integrable
potential. Specifically, we proved:

Theorem 6.2 ([42]) Fiz a closed (M?,g). Let &; — 0 and u., be Allen—Cahn
g;-solutions with respect to the integrable potential W (t) = 1 — cos(wt), and which
satisfy

e sup,; E.,[u.,] < oo, and

e sup, ind,, [u.,] < co.

Then, there exist distinct simple closed geodesics o1,...,0, C (M?,g) and
integers my,...,mg > 1 so that, subsequentially:

Ug, ~ myoy U---Umyoy ase; — 0.

In the same paper, we also compute the constant a(2) = /7 in Theorem
(with n = 2). To do so, we invoke Theorem on carefully chosen perturbations
of a round two-sphere and import its conclusion into the Almgren—Pitts min-max
theory using work of Dey ([44]) and invoke a novel Lyusternik—Schirelman-inspired
counting argument. For more information, we refer the reader to [42].

It is worth noting that recent constructions of Liu—Pacard—Wei ([45]) show
that the multiplicity-one result of Theorem[3:1]does not hold in the two-dimensional
case. This makes the two-dimensional case all the more interesting.

7 Two parallel stories

The author is aware of some very interesting developments in two fields that are
roughly parallel to the Allen-Cahn equation discussed here.

One is the study of critical points of the s-perimeter with s € (0, 1), also
known as non-local minimal hypersurfaces, and their convergence to minimal hy-
persurfaces as s — 1. Caselli-Florit Simon—Serra established in [46] an analog to
Theorem Recently, Florit Simon established in [47] the s-perimeter analog of
Theorem (d) and he used to to prove an analog of the multiplicity-one result
from Theorem for n = 3. Conjecture [5.1] is known in the s-perimeter setting
up to n = 4; it was shown for n = 3 by Cabré-Cinti—Serra in [48] and for n = 4 by
Chan—Dipierro—Serra—Valdinoci in [49]. One expects that the analog of the higher
dimensional Wang—Wei estimates ([36]) to soon be available in the s-perimeter
setting and allow an extension of the Florit Simon result up to n = 4.

The second is the study of e-solutions of the self-dual magnetic Ginzburg-
Landau equation (abelian Higgs model) and their possible convergence as € — 0 to
codimension-two minimal submanifolds; ¢f. Definition[2.1] This theory is relatively
underdeveloped but of significant interest. In recent progress, Pigati—Stern proved
in [50] the analog to the Hutchinson-Tonegawa precursor to Theorem from
[24]: no index bounds are assumed, and the convergence is accordingly to a weaker
object, a “codimension-two integral stationary varifold”. It is not yet clear how to
exploit index bounds in this equation. The analog to Conjecture [5.1]is also wide
open when n > 3; if n = 2, then a full classification of all critical points (in the
self-dual case) was obtained by Taubes in [51].
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